目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每...目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每组例数均为55例,分组方法为随机数字表法。对照组给予盐酸米诺环素片,在对照组患者治疗的基础上,采用低能量Pixel调Q像束激光对观察组患者进行治疗。两组治疗时间均为6周。比较两组临床疗效(治疗6周后),玫瑰痤疮情况、整体病情、p38丝裂原活化蛋白激酶(p38 mitogen activated protein kinase,p38MAPK)通路蛋白、生活质量、红斑情况、面部功能、炎性因子(治疗前、治疗6周后),不良反应(治疗期间)。结果:治疗6周后,观察组总有效率高于对照组(76.36%vs.54.55%,P<0.05)。与治疗前比较,两组治疗6周后的玫瑰痤疮医师全球评分(Patient's global assessment,PGA)、整体病情评估(Investigator global assessment,IGA)、皮肤病生活质量量表(Dermatology life quality index,DLQI)评分、红斑评估量表(Clinician′s erythema assessment,CEA)评分、皮损区红斑指数(Erythema index,EI)、经皮水分丢失(Trans epidermal water loss,TEWL)、皮肤酸碱度(Pondus Hydrogenii,pH)值、炎性因子及p38MAPK通路蛋白相关因子水平均降低,且相比于对照组,观察组更低;两组角质层含水量均升高,且相比于对照组,观察组更高(P<0.05)。观察组和对照组治疗期间的不良反应发生率比较差异无统计学意义(P>0.05)。结论:玫瑰痤疮患者经低能量Pixel调Q像束激光联合米诺环素治疗后,其相关临床症状可得到有效缓解,炎症反应得以减轻,并可调节p38MAPK信号通路蛋白的表达,进一步可促进患者红斑情况及面部功能的改善,进而促使患者生活质量及临床疗效得以提高,且具有良好的安全性。展开更多
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell...Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.展开更多
Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent nav...Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.展开更多
The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of differen...The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.展开更多
Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into the...Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.展开更多
Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requ...Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requiring detailed shading and contrast.This paper presents a novel Enhanced Pixel Integration(EPI)technique designed to improve the visual quality of images generated by CartoonGAN.Rather than modifying the core model,the EPI approach employs post-processing adjustments that enhance images without significant computational overhead.In this method,images produced by CartoonGAN are converted from Red-Green-Blue(RGB)to Hue-Saturation-Value(HSV)format,allowing for precise adjustments in hue,saturation,and brightness,thereby improving color fidelity.Specific correction values are applied to fine-tune colors,ensuring they closely match the original input while maintaining the characteristic,stylized effect of CartoonGAN.The corrected images are blended with the originals to retain aesthetic appeal and visual distinctiveness,resulting in improved color accuracy and overall coherence.Experimental results demonstrate that EPI significantly increases similarity to original input images compared to the standard CartoonGAN model,achieving a 40.14%enhancement in visual similarity in Learned Perceptual Image Patch Similarity(LPIPS),a 30.21%improvement in structural consistency in Structural Similarity Index Measure(SSIM),and an 11.81%reduction in pixel-level error in Mean Squared Error(MSE).By addressing limitations present in the traditional CartoonGAN pipeline,EPI offers practical enhancements for creative applications,particularly within media and design fields where visual fidelity and artistic style preservation are critical.These improvements align with the goals of Fog and Edge Computing,which also seek to enhance processing efficiency and application performance in sensitive industries such as healthcare,logistics,and education.This research not only resolves key deficiencies in existing CartoonGAN models but also expands its potential applications in image-based content creation,bridging gaps between technical constraints and creative demands.Future studies may explore the adaptability of EPI across various datasets and artistic styles,potentially broadening its impact on visual transformation tasks.展开更多
In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To addr...In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.展开更多
In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo...In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.展开更多
A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and succ...A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and success-fully taped out with a Chartered 0.35μm process. The pixel pitch is 8μm × 8μm with a fill factor of 57%, the photo-sensitivity is 0.8V/(lux · s) ,and the dynamic range is 50dB. Theoretical analysis and test results indicate that as the process is scaled down, a smaller pixel pitch reduces the sensitivity. A deep junction n-well/p-substrate photodiode with a reasonable fill factor and high sensitivity are more appropriate for submicron processes.展开更多
Based on the analysis to the behavior of bad pixels, a statistics-based auto-detecting and compensation algorithm for bad pixels is proposed. The correcting process is divided into two stages: bad pixel detection and...Based on the analysis to the behavior of bad pixels, a statistics-based auto-detecting and compensation algorithm for bad pixels is proposed. The correcting process is divided into two stages: bad pixel detection and bad pixel compensation. The proposed detection algorithm is a combination of median filtering and statistic method. Single frame median filtering is used to locate approximate map, then statistic method and threshold value is used to get the accurate location map of bad pixels. When the bad pixel detection is done, neighboring pixel replacement algorithm is used to compensate them in real-time. The effectiveness of this approach is test- ed by applying it to I-IgCATe infrared video. Experiments on real infrared imaging sequences demonstrate that the proposed algorithm requires only a few frames to obtain high quality corrections. It is easy to combine with traditional static methods, update the pre-defined location map in real-time.展开更多
A detailed principle and a rigorous analysis of a new noise,the gate-induced noise,in pixel MOSFET of CMOS imagers are provided.The gate-induced noise of the MOSFET is more notable in the strong reversion region than...A detailed principle and a rigorous analysis of a new noise,the gate-induced noise,in pixel MOSFET of CMOS imagers are provided.The gate-induced noise of the MOSFET is more notable in the strong reversion region than that in the subthreshold region when the applied gate voltage is low.However,the applied gate voltage being up to 3V,the gate-induced noise is more notable with the ω/ω T increasing when the MOSFET operates in the subthreshold region than that in the strong reversion region.Between the photocurrent I D and the root mean square value of the gated-induced noise,current i 2 d presents the relation of i 2 d∝I D in the saturation region of the strong reversion and approximately i 2 d∝I D in the subthreshold region.A deta iled and rigorous study of the gate-induced noise in the reset MOSFET for the p hotodiode APS and improved photodiode APS are provided.The improvement of logari thmic response APS is analyzed and the simulation results show that the gate-in duced noise can be reduced.展开更多
文摘目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每组例数均为55例,分组方法为随机数字表法。对照组给予盐酸米诺环素片,在对照组患者治疗的基础上,采用低能量Pixel调Q像束激光对观察组患者进行治疗。两组治疗时间均为6周。比较两组临床疗效(治疗6周后),玫瑰痤疮情况、整体病情、p38丝裂原活化蛋白激酶(p38 mitogen activated protein kinase,p38MAPK)通路蛋白、生活质量、红斑情况、面部功能、炎性因子(治疗前、治疗6周后),不良反应(治疗期间)。结果:治疗6周后,观察组总有效率高于对照组(76.36%vs.54.55%,P<0.05)。与治疗前比较,两组治疗6周后的玫瑰痤疮医师全球评分(Patient's global assessment,PGA)、整体病情评估(Investigator global assessment,IGA)、皮肤病生活质量量表(Dermatology life quality index,DLQI)评分、红斑评估量表(Clinician′s erythema assessment,CEA)评分、皮损区红斑指数(Erythema index,EI)、经皮水分丢失(Trans epidermal water loss,TEWL)、皮肤酸碱度(Pondus Hydrogenii,pH)值、炎性因子及p38MAPK通路蛋白相关因子水平均降低,且相比于对照组,观察组更低;两组角质层含水量均升高,且相比于对照组,观察组更高(P<0.05)。观察组和对照组治疗期间的不良反应发生率比较差异无统计学意义(P>0.05)。结论:玫瑰痤疮患者经低能量Pixel调Q像束激光联合米诺环素治疗后,其相关临床症状可得到有效缓解,炎症反应得以减轻,并可调节p38MAPK信号通路蛋白的表达,进一步可促进患者红斑情况及面部功能的改善,进而促使患者生活质量及临床疗效得以提高,且具有良好的安全性。
文摘Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.
基金financially supported by the Foundation of Shanxi Key Laboratory of Machine Vision and Virtual Reality (Grant No.447-110103)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission (Grant No. 22dz1204000)。
文摘Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.
基金supported by the National Natural Science Foundation of China(42372144)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01E09)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05).
文摘The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.
基金the financial support provided by the National Key R&D Program of China(2022YFB3805700)the National Natural Science Foundation of China(Grant Nos.12072094 and 12172106)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M730869)the Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2023A004)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230959)。
文摘Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.
基金supported by the National Research Foundation of Korea(NRF)under Grant RS-2022-NR-069955(2022R1A2C1092178).
文摘Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requiring detailed shading and contrast.This paper presents a novel Enhanced Pixel Integration(EPI)technique designed to improve the visual quality of images generated by CartoonGAN.Rather than modifying the core model,the EPI approach employs post-processing adjustments that enhance images without significant computational overhead.In this method,images produced by CartoonGAN are converted from Red-Green-Blue(RGB)to Hue-Saturation-Value(HSV)format,allowing for precise adjustments in hue,saturation,and brightness,thereby improving color fidelity.Specific correction values are applied to fine-tune colors,ensuring they closely match the original input while maintaining the characteristic,stylized effect of CartoonGAN.The corrected images are blended with the originals to retain aesthetic appeal and visual distinctiveness,resulting in improved color accuracy and overall coherence.Experimental results demonstrate that EPI significantly increases similarity to original input images compared to the standard CartoonGAN model,achieving a 40.14%enhancement in visual similarity in Learned Perceptual Image Patch Similarity(LPIPS),a 30.21%improvement in structural consistency in Structural Similarity Index Measure(SSIM),and an 11.81%reduction in pixel-level error in Mean Squared Error(MSE).By addressing limitations present in the traditional CartoonGAN pipeline,EPI offers practical enhancements for creative applications,particularly within media and design fields where visual fidelity and artistic style preservation are critical.These improvements align with the goals of Fog and Edge Computing,which also seek to enhance processing efficiency and application performance in sensitive industries such as healthcare,logistics,and education.This research not only resolves key deficiencies in existing CartoonGAN models but also expands its potential applications in image-based content creation,bridging gaps between technical constraints and creative demands.Future studies may explore the adaptability of EPI across various datasets and artistic styles,potentially broadening its impact on visual transformation tasks.
文摘In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.
基金supported by the National Natural Science Foundation of China(Nos.11875274 and U1232202)。
文摘In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.
文摘A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and success-fully taped out with a Chartered 0.35μm process. The pixel pitch is 8μm × 8μm with a fill factor of 57%, the photo-sensitivity is 0.8V/(lux · s) ,and the dynamic range is 50dB. Theoretical analysis and test results indicate that as the process is scaled down, a smaller pixel pitch reduces the sensitivity. A deep junction n-well/p-substrate photodiode with a reasonable fill factor and high sensitivity are more appropriate for submicron processes.
基金Sponsored by the National Natural Science Foundation of China(60877060)
文摘Based on the analysis to the behavior of bad pixels, a statistics-based auto-detecting and compensation algorithm for bad pixels is proposed. The correcting process is divided into two stages: bad pixel detection and bad pixel compensation. The proposed detection algorithm is a combination of median filtering and statistic method. Single frame median filtering is used to locate approximate map, then statistic method and threshold value is used to get the accurate location map of bad pixels. When the bad pixel detection is done, neighboring pixel replacement algorithm is used to compensate them in real-time. The effectiveness of this approach is test- ed by applying it to I-IgCATe infrared video. Experiments on real infrared imaging sequences demonstrate that the proposed algorithm requires only a few frames to obtain high quality corrections. It is easy to combine with traditional static methods, update the pre-defined location map in real-time.
文摘A detailed principle and a rigorous analysis of a new noise,the gate-induced noise,in pixel MOSFET of CMOS imagers are provided.The gate-induced noise of the MOSFET is more notable in the strong reversion region than that in the subthreshold region when the applied gate voltage is low.However,the applied gate voltage being up to 3V,the gate-induced noise is more notable with the ω/ω T increasing when the MOSFET operates in the subthreshold region than that in the strong reversion region.Between the photocurrent I D and the root mean square value of the gated-induced noise,current i 2 d presents the relation of i 2 d∝I D in the saturation region of the strong reversion and approximately i 2 d∝I D in the subthreshold region.A deta iled and rigorous study of the gate-induced noise in the reset MOSFET for the p hotodiode APS and improved photodiode APS are provided.The improvement of logari thmic response APS is analyzed and the simulation results show that the gate-in duced noise can be reduced.