With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functio...A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.展开更多
In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe ...In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
The sustainable development of Chinas social economy, the heating pipe network project has also had a great development. At present, the society gives positive encouragement and advocacy to the sustainable development...The sustainable development of Chinas social economy, the heating pipe network project has also had a great development. At present, the society gives positive encouragement and advocacy to the sustainable development of the project, and takes energy conservation and emission reduction as a very important task at present. Environmental protection has also become the primary factor of project construction. Central heating has been gradually adopted by construction workers in the heat network, mainly because central heating can greatly reduce the cost of the project. But if there is a problem in a node in the heat network, it will lead to a large area of the heat network without heating phenomenon. Therefore, due to the complex pipe network, the quality danger of heating pipe network is easy to occur in the construction process. Strengthening the construction technology is an important basis to ensure the quality.展开更多
Since the reform and opening up, China's economic level has gradually improved, and people’s demand for a better life has become increasingly strong. With the rapid development of urbanization, large-scale popula...Since the reform and opening up, China's economic level has gradually improved, and people’s demand for a better life has become increasingly strong. With the rapid development of urbanization, large-scale population and construction facilities gather in the city. Heat energy is an essential energy in people’s life. Central heating engineering has become an essential infrastructure in urban construction. At the same time, heating engineering also implements the strategy of human sustainable development, which is important for improving people’s living standards, protecting the environment and improving the environment. The present situation of gas reservoir plays an important role. The construction of heat pipe network in the city is relatively strict. In order to avoid that the heat pipe network project will affect the interests of residents, public safety and the stability of the whole system due to quality problems, the relevant parties of the project should conduct real-time supervision and inspection according to relevant standards during the construction of facilities. The design documents should be implemented to ensure the scientificity, safety and stability of the project. And improve the efficiency of its system operation, to achieve the purpose of economic operation. This paper makes a detailed analysis and discussion on the importance of the safety construction of the heat pipe network project and the supervision in the construction process, so as to lay a theoretical foundation for the smooth progress of the project.展开更多
At present, in the municipal drainage pipe network project, the level of the construction quality of the project whether to play an important correlation. Municipal drainage pipe network engineering in the actual cons...At present, in the municipal drainage pipe network project, the level of the construction quality of the project whether to play an important correlation. Municipal drainage pipe network engineering in the actual construction, should be closely around the quality control of scientific and reasonable control, take targeted means to increase the quality control, understand the main factors affecting the quality of engineering, develop a scientific and reasonable construction means, to promote the project can play a due value. This paper explores the quality control of such projects.展开更多
In order to understand the current situation of urban sewage treatment and pipe network construction and operation, find out the foundation, find out the sticking point, control the source and stop the pollution, help...In order to understand the current situation of urban sewage treatment and pipe network construction and operation, find out the foundation, find out the sticking point, control the source and stop the pollution, help the water pollution prevention and control, and promote the sustainable development of water environment, this paper investigates the current situation of urban sewage treatment and pipe network construction and operation in Qiannan Prefecture.展开更多
This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of sea...This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.展开更多
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
文摘A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.
文摘In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘The sustainable development of Chinas social economy, the heating pipe network project has also had a great development. At present, the society gives positive encouragement and advocacy to the sustainable development of the project, and takes energy conservation and emission reduction as a very important task at present. Environmental protection has also become the primary factor of project construction. Central heating has been gradually adopted by construction workers in the heat network, mainly because central heating can greatly reduce the cost of the project. But if there is a problem in a node in the heat network, it will lead to a large area of the heat network without heating phenomenon. Therefore, due to the complex pipe network, the quality danger of heating pipe network is easy to occur in the construction process. Strengthening the construction technology is an important basis to ensure the quality.
文摘Since the reform and opening up, China's economic level has gradually improved, and people’s demand for a better life has become increasingly strong. With the rapid development of urbanization, large-scale population and construction facilities gather in the city. Heat energy is an essential energy in people’s life. Central heating engineering has become an essential infrastructure in urban construction. At the same time, heating engineering also implements the strategy of human sustainable development, which is important for improving people’s living standards, protecting the environment and improving the environment. The present situation of gas reservoir plays an important role. The construction of heat pipe network in the city is relatively strict. In order to avoid that the heat pipe network project will affect the interests of residents, public safety and the stability of the whole system due to quality problems, the relevant parties of the project should conduct real-time supervision and inspection according to relevant standards during the construction of facilities. The design documents should be implemented to ensure the scientificity, safety and stability of the project. And improve the efficiency of its system operation, to achieve the purpose of economic operation. This paper makes a detailed analysis and discussion on the importance of the safety construction of the heat pipe network project and the supervision in the construction process, so as to lay a theoretical foundation for the smooth progress of the project.
文摘At present, in the municipal drainage pipe network project, the level of the construction quality of the project whether to play an important correlation. Municipal drainage pipe network engineering in the actual construction, should be closely around the quality control of scientific and reasonable control, take targeted means to increase the quality control, understand the main factors affecting the quality of engineering, develop a scientific and reasonable construction means, to promote the project can play a due value. This paper explores the quality control of such projects.
文摘In order to understand the current situation of urban sewage treatment and pipe network construction and operation, find out the foundation, find out the sticking point, control the source and stop the pollution, help the water pollution prevention and control, and promote the sustainable development of water environment, this paper investigates the current situation of urban sewage treatment and pipe network construction and operation in Qiannan Prefecture.
文摘This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.