The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effectiv...The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.展开更多
Layered Ni-rich transition metal oxide is treated as the most promising alternative cathode due to their high-capacity and flexible composition.However,the severe lattice strain and slow Li-ion migration kinetics seve...Layered Ni-rich transition metal oxide is treated as the most promising alternative cathode due to their high-capacity and flexible composition.However,the severe lattice strain and slow Li-ion migration kinetics severely restrict their practical application.Herein,a novelty strategy induced pinning effect and defect structure in layered Ni-rich transition metal oxide cathodes is proposed via a facile cation(iron ion)/anion(polyanion)co-doping method.Subsequently,the effects of pinning effect and defect structure on element valence state,crystal structure,morphology,lattice strain,and electrochemical performance during lithiation/delithiation are systematically explored.The detailed characterizations(soft X-ray absorption spectroscopy(sXAS),in-situ X-ray diffraction(XRD),etc.)and density functional theory(DFT)calculation demonstrate that the pinning effects built-in LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)materials by the dual-site occupation of iron ions on lithium and transition metal sites effectively alleviate the abrupt lattice strain caused by an unfavorable phase transition and the subsequent induction of defect structures in the Li layer can greatly reduce the lithium-ion diffusion barrier.Therefore,the modified LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)exhibits a high-capacity of 206.5 mAh g^(-1)and remarkably enhanced capacity retention of 93.9%after 100 cycles,far superior to~14.1%of the pristine cathodes.Besides,an excellent discharge capacity of 180.1 mAh g^(-1)at 10 C rate is maintained,illustrating its remarkable rate capability.This work reports a pinning effect and defect engineering method to suppress the lattice strain and alleviate lithium-ion kinetic barriers in the Ni-rich layered cathodes,providing a roadmap for understanding the fundamental mechanism of an intrinsic activity modulation and structural design of layered cathode materials.展开更多
Scandium addition significantly alters the corrosion resistance and mechanical strength of Al-3 Mg alloys. The addition of 0.3% - 0.4% scandium with 0.14% zirconium has a beneficial effect on the corrosion resistance ...Scandium addition significantly alters the corrosion resistance and mechanical strength of Al-3 Mg alloys. The addition of 0.3% - 0.4% scandium with 0.14% zirconium has a beneficial effect on the corrosion resistance of the alloy under smoothly stirred condition. Addition of 0.3% Sc significantly suppresses corrosion under dynamic flow conditions. It also creates an optimal strengthening effect on the alloys. The corrosion resistance is attributed to the strong passive layer of Sc2O3 formed on the ultrafine coherent precipitates of Al3Sc. A strong evidence of the pinning of grain bounda-ries by coherent nano Al3Sc precipitates is responsible for the strengthening effect.展开更多
The effects of varying strain rates and deformation temperatures on the microstructure evolution of the FGH4113A alloy were investigated through hot compression experiments.During hot deformation,grain evolution is pr...The effects of varying strain rates and deformation temperatures on the microstructure evolution of the FGH4113A alloy were investigated through hot compression experiments.During hot deformation,grain evolution is primarily governed by dynamic recrystallization(DRX)and twinning primarily.Furthermore,the pinning effect of the primaryγ'phase(γ'p phase)plays a crucial role in grain refinement.Lower strain rates or higher temperatures facilitate DRX,twinning,and the dissolution of theγ'p phase.At 1140℃,significant dissolution of theγ'p phase and the subsequent loss of its pinning effect reduce twinning activity.A unique twinning mechanism,termed“pinning twinning”,is identified,occurring exclusively under the influence of the pinning effect.When grain boundary migration fails to accommodate dislocations due to the pinning effect,grains preferentially eliminate dislocations via twinning,thereby reducing local strain energy.The grain size prediction model is improved by considering the pinning effect.展开更多
The nickel-rich layered ternary cathode material(NCM)has been extensively studied due to its high specific capacity and low cost.Nevertheless,with the increase of Ni content,the unstable structure of NCM material has ...The nickel-rich layered ternary cathode material(NCM)has been extensively studied due to its high specific capacity and low cost.Nevertheless,with the increase of Ni content,the unstable structure of NCM material has gradually become prominent.Residual alkali on the surface and Li^(+)/Ni^(2+)mixing before cycling,phase change,transition metal ions dissolution,microcracking,and other issues during the cycle,are the primary causes for the fast capacity fading of Ni-rich materials.In this study,Sc^(3+)is doped into the LiNi_(0.8)Co_(0.1)Mn_(0.1)0_(2) material,which has been demonstrated to impede the Li^(+)/Ni^(2+)mixing,while simultaneously increasing the layer spacing.This results in the stabilization of the material structure and an enhancement of both the cycling stability and the rate performance.Notably,single-particle force testing and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)imaging further demonstrate reduced stress accumulation and mitigated chemo-mechanical failure.This study underscores the efficacy of a minor addition of multifunctional rare-earth doping in enhancing the chemo-mechanical stability of Ni-rich cathodes,offering a straightforward and comprehensive solution to optimize the design and performance of energy storage cathodes.展开更多
The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challengin...The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376096,61327813,and 11234007)
文摘The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.
基金financially supported by the Science and Technology of Guangxi Zhuang Autonomous Region(the Guangxi special Fund for Scientific Center and Talent Resources:AD18281073,Chongke 2018AD15002 and FA2020011)。
文摘Layered Ni-rich transition metal oxide is treated as the most promising alternative cathode due to their high-capacity and flexible composition.However,the severe lattice strain and slow Li-ion migration kinetics severely restrict their practical application.Herein,a novelty strategy induced pinning effect and defect structure in layered Ni-rich transition metal oxide cathodes is proposed via a facile cation(iron ion)/anion(polyanion)co-doping method.Subsequently,the effects of pinning effect and defect structure on element valence state,crystal structure,morphology,lattice strain,and electrochemical performance during lithiation/delithiation are systematically explored.The detailed characterizations(soft X-ray absorption spectroscopy(sXAS),in-situ X-ray diffraction(XRD),etc.)and density functional theory(DFT)calculation demonstrate that the pinning effects built-in LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)materials by the dual-site occupation of iron ions on lithium and transition metal sites effectively alleviate the abrupt lattice strain caused by an unfavorable phase transition and the subsequent induction of defect structures in the Li layer can greatly reduce the lithium-ion diffusion barrier.Therefore,the modified LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)exhibits a high-capacity of 206.5 mAh g^(-1)and remarkably enhanced capacity retention of 93.9%after 100 cycles,far superior to~14.1%of the pristine cathodes.Besides,an excellent discharge capacity of 180.1 mAh g^(-1)at 10 C rate is maintained,illustrating its remarkable rate capability.This work reports a pinning effect and defect engineering method to suppress the lattice strain and alleviate lithium-ion kinetic barriers in the Ni-rich layered cathodes,providing a roadmap for understanding the fundamental mechanism of an intrinsic activity modulation and structural design of layered cathode materials.
文摘Scandium addition significantly alters the corrosion resistance and mechanical strength of Al-3 Mg alloys. The addition of 0.3% - 0.4% scandium with 0.14% zirconium has a beneficial effect on the corrosion resistance of the alloy under smoothly stirred condition. Addition of 0.3% Sc significantly suppresses corrosion under dynamic flow conditions. It also creates an optimal strengthening effect on the alloys. The corrosion resistance is attributed to the strong passive layer of Sc2O3 formed on the ultrafine coherent precipitates of Al3Sc. A strong evidence of the pinning of grain bounda-ries by coherent nano Al3Sc precipitates is responsible for the strengthening effect.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706902)Innovation Project for Graduate Students of Hunan Province+1 种基金China(No.1053320212786)supported in part by the High Performance Computing Center of Central South University,China。
文摘The effects of varying strain rates and deformation temperatures on the microstructure evolution of the FGH4113A alloy were investigated through hot compression experiments.During hot deformation,grain evolution is primarily governed by dynamic recrystallization(DRX)and twinning primarily.Furthermore,the pinning effect of the primaryγ'phase(γ'p phase)plays a crucial role in grain refinement.Lower strain rates or higher temperatures facilitate DRX,twinning,and the dissolution of theγ'p phase.At 1140℃,significant dissolution of theγ'p phase and the subsequent loss of its pinning effect reduce twinning activity.A unique twinning mechanism,termed“pinning twinning”,is identified,occurring exclusively under the influence of the pinning effect.When grain boundary migration fails to accommodate dislocations due to the pinning effect,grains preferentially eliminate dislocations via twinning,thereby reducing local strain energy.The grain size prediction model is improved by considering the pinning effect.
基金supported by National Natural Science Foundation of China(22179008,21875022)Yibin Jie Bang Gua Shuai(2022JB004)+2 种基金L.Chen acknowledges the support from Beijing Nova Program(20230484241)J.Y.Dong acknowledges the support from the China Postdoctoral Science Foundation(2024M754084)the Special Support of Chongqing Postdoctoral Research Project(2023CQBSHTB2041).
文摘The nickel-rich layered ternary cathode material(NCM)has been extensively studied due to its high specific capacity and low cost.Nevertheless,with the increase of Ni content,the unstable structure of NCM material has gradually become prominent.Residual alkali on the surface and Li^(+)/Ni^(2+)mixing before cycling,phase change,transition metal ions dissolution,microcracking,and other issues during the cycle,are the primary causes for the fast capacity fading of Ni-rich materials.In this study,Sc^(3+)is doped into the LiNi_(0.8)Co_(0.1)Mn_(0.1)0_(2) material,which has been demonstrated to impede the Li^(+)/Ni^(2+)mixing,while simultaneously increasing the layer spacing.This results in the stabilization of the material structure and an enhancement of both the cycling stability and the rate performance.Notably,single-particle force testing and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)imaging further demonstrate reduced stress accumulation and mitigated chemo-mechanical failure.This study underscores the efficacy of a minor addition of multifunctional rare-earth doping in enhancing the chemo-mechanical stability of Ni-rich cathodes,offering a straightforward and comprehensive solution to optimize the design and performance of energy storage cathodes.
基金supported by the National Natural Science Foundation of China[Grant Nos.52272288 and 51972039]the China Postdoctoral Science Foundation[No.2021M700658].
文摘The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.