The outbreak of COVID-19 has drawn great attention around the world.SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period.In particular,the emergence of asympt...The outbreak of COVID-19 has drawn great attention around the world.SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period.In particular,the emergence of asymptomatic infections has made the epidemic even more severe.Therefore,early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus.Developing simple,portable,and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention.The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening.This review summarizes the point-of-care testing platforms developed by nucleic acid detection,immunological detection,and nanomaterial-based biosensors detection.Furthermore,this paper provides a prospect for designing future highly accurate,cheap,and convenient SARS-CoV-2 diagnostic technology.展开更多
To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and...To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.展开更多
This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for r...This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.展开更多
A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain ...A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.展开更多
For strapdown stabilized platform used in automatic vertical drilling system,a new dynamic measurement algorithm based on three-axis accelerometer and three-axis fluxgate measurement signals is proposed and simulated ...For strapdown stabilized platform used in automatic vertical drilling system,a new dynamic measurement algorithm based on three-axis accelerometer and three-axis fluxgate measurement signals is proposed and simulated under the condition of small inclination dynamic rotation.The error compensation algorithm is also proposed.The bench test of strapdown stabilized platform is designed and carried out.The results show that:When the azimuth angle is the same,the larger the inclination angle is,the greater the error of the measurement results will be.When the inclination angle is the same,the measurement error is the largest when the azimuth angle is 90°and 270°,and the measurement error curve presents a sinusoidal change with the change of azimuth angle.After the error function compensation,the error curve between the calculation results and the true value is basically not affected by the inclination angle and the azimuth angle,and the calculation accuracy is signifi cantly improved.Under the random rotating speed of 0-180 rpm,the minimum error of the measured well inclination value was no more than 0.03°and the maximum was no more than 1.58°.The feasibility of the proposed dynamic azimuth measurement algorithm is verifi ed.This article provides a technical reference for the strapdown automatic drilling system.展开更多
Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software developme...Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software development,design,etc.In software development,test is the key to identify and control bugs and errors in the software.Therefore,software companies often test the software to ensure that it is qualified.In recent years,more attention has been paid to a multi-platform computer software testing method,which can make up for defects in traditional testing methods to improve test accuracy.Firstly,this paper illustrates the connotation and features of software testing.Secondly,common software testing platforms and their requirements are analyzed.Finally,this paper proposes software testing method based on multiple platforms.展开更多
Beijing Aerospace System Engineering Institute of China Academy of Launch Vehicle Technology (CALT) declared recently that theinstitute has set up a laboratory whichwould operate a newly
The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-...The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-aperture solar telescopes of China.This paper describes the overview of the site,the observation platform and the monitor instrument.In addition,simple statistical results are presented(from November,2016 up to December,2017).Detailed data results can refer to the overview of LOT site testing and data analysis articles,which were published during the same period.展开更多
To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressur...To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressure inside the bucket foundations, the water pressure at the bottom of the bucket foundations, the acceleration of the platform and the towing force were determined in the test process. The time-history curves of the measured parameters were obtained, and the frequency responses of the parameters at different drafts were analyzed by means of fast Fourier transform(FFT). The results showed that the platform natural frequency of heave decreased slightly with the rise of draft. The natural frequencies of roll and pitch are much lower than that of heave, and they increased slightly with the increase of draft. When towing in the following sea, the maximum acceleration of surge, sway and heave has downward trends with the increase of draft, but the change range decreased gradually with the increase of draft. When the draft is 5.0 m(the ratio of draft to bucket height is 0.56), the towing dynamic responses achieve the maximum, which is not conducive to the towing of the platform. When the draft is 6.0 m(the ratio of draft to bucket height is 0.67), the towing dynamic responses are the most stable.展开更多
Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nan...Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nanosphere and 3,3′,5,5′-tetramethylbenzidine(TMB)induced test strips for signal-on detection)that can be utilized for hexavalent chromium(Cr^(6+))detection.Interestingly,Cr^(6+)(CrO_(4)^(2−)) as a smart switch can remarkably enhance the oxidase-like activity of Au/δ-MnO_(2) hollow nanosphere.The presence of Cr^(6+) can regulate the surface electronic redistribution of Au/δ-MnO_(2) and adjust the geometric configuration,which leads to the improvement in oxidase-like activity of Au/δ-MnO_(2).As a proof-of-concept application,a visual paper-based sensing platform of Cr^(6+) along with quantitative analysis by the test strips was successfully constructed.This paper-based sensing platform exhibits a linear range with excellent selectivity for other interfering substances and lower limit of detection of 0.09μmol·L^(−1),providing a promising toolkit at-home Cr^(6+) measurement and environmental monitoring.展开更多
With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platform...With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platforms.However,compared with mechanically driven platforms,the stiffness and damping of the fluid,as well as the coupling effect between the fluid and the structure need to be considered for electro-hydraulic-driven parallel stabilization platforms,making the modal and dynamic response characteristics of the mechanism more complex.With the aim of solving the aforementioned issues,we research the electro-hydraulic driven 3-UPS/S parallel stabilization platform considering the hinge stiffness.Moreover,the characteristic vibration equation of the mechanism is established using the virtual work principle.Subsequently,the variation characteristics of the natural frequency and the vibration response according to the position of the mechanism are analyzed based on the dynamic equation.Finally,the correctness of the model is verified by a modal test and Runge-Kutta methods.This study provides a theoretical basis for the dynamic design of electrohydraulic-driven parallel mechanisms.展开更多
With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfie...With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.展开更多
In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-dr...In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.展开更多
An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are com...An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.展开更多
基金supported by the National Key R&D Program of China(No.2021YFC2301100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB30000000)+3 种基金the National Natural Science Foundation of China(No.61890940)the Chongqing Bayu Scholar Program(No.DP2020036)Program of Shanghai Academic Research Leaders(No.23XD1420200)Fudan University。
文摘The outbreak of COVID-19 has drawn great attention around the world.SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period.In particular,the emergence of asymptomatic infections has made the epidemic even more severe.Therefore,early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus.Developing simple,portable,and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention.The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening.This review summarizes the point-of-care testing platforms developed by nucleic acid detection,immunological detection,and nanomaterial-based biosensors detection.Furthermore,this paper provides a prospect for designing future highly accurate,cheap,and convenient SARS-CoV-2 diagnostic technology.
基金The financial supports received from National Natural Science Foundation of China (U20B6005, 22178378, and 22127812)
文摘To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.
基金Foundation item: Supported by the National Science Foundation (CMMI-1026264 and EEC-1157094).
文摘This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.
基金supported by the National Natural Science Foundation of China (Grant No.60605028)the National High-Technology Research and Development Program of China (Grant No.2007AA04Z225)+2 种基金the Shanghai Rising-Star Program (Grant Nos.07QA14024, 07QH14006)the Shanghai Shuguang Program (Grant No.07SG47)the Shanghai Leading Key Laboratory of Mechanical Automation and Robotics Science Foundation (Grant No.ZZ0805)
文摘A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.
基金The financial supports from National key plan project for research and development of China (2019YFA0708300) and (2023YFC3009200)。
文摘For strapdown stabilized platform used in automatic vertical drilling system,a new dynamic measurement algorithm based on three-axis accelerometer and three-axis fluxgate measurement signals is proposed and simulated under the condition of small inclination dynamic rotation.The error compensation algorithm is also proposed.The bench test of strapdown stabilized platform is designed and carried out.The results show that:When the azimuth angle is the same,the larger the inclination angle is,the greater the error of the measurement results will be.When the inclination angle is the same,the measurement error is the largest when the azimuth angle is 90°and 270°,and the measurement error curve presents a sinusoidal change with the change of azimuth angle.After the error function compensation,the error curve between the calculation results and the true value is basically not affected by the inclination angle and the azimuth angle,and the calculation accuracy is signifi cantly improved.Under the random rotating speed of 0-180 rpm,the minimum error of the measured well inclination value was no more than 0.03°and the maximum was no more than 1.58°.The feasibility of the proposed dynamic azimuth measurement algorithm is verifi ed.This article provides a technical reference for the strapdown automatic drilling system.
文摘Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software development,design,etc.In software development,test is the key to identify and control bugs and errors in the software.Therefore,software companies often test the software to ensure that it is qualified.In recent years,more attention has been paid to a multi-platform computer software testing method,which can make up for defects in traditional testing methods to improve test accuracy.Firstly,this paper illustrates the connotation and features of software testing.Secondly,common software testing platforms and their requirements are analyzed.Finally,this paper proposes software testing method based on multiple platforms.
文摘Beijing Aerospace System Engineering Institute of China Academy of Launch Vehicle Technology (CALT) declared recently that theinstitute has set up a laboratory whichwould operate a newly
基金Fund for Astronomical Telescopes and Facility Instrumentsbudgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)+3 种基金supported by the National Natural Science Foundation of China(Grant Nos.11873092,11533009 and 11503084)the Science and Technology Development FundMacao SAR(File No.0002/2019/APD)the One Belt and One Road project of the West Light Foundation,Chinese Academy of Sciences。
文摘The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-aperture solar telescopes of China.This paper describes the overview of the site,the observation platform and the monitor instrument.In addition,simple statistical results are presented(from November,2016 up to December,2017).Detailed data results can refer to the overview of LOT site testing and data analysis articles,which were published during the same period.
基金Supported by the National Natural Science Foundation of China(No.51309179)Tianjin Municipal Natural Science Foundation(No.14JCQNJC07000)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)
文摘To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressure inside the bucket foundations, the water pressure at the bottom of the bucket foundations, the acceleration of the platform and the towing force were determined in the test process. The time-history curves of the measured parameters were obtained, and the frequency responses of the parameters at different drafts were analyzed by means of fast Fourier transform(FFT). The results showed that the platform natural frequency of heave decreased slightly with the rise of draft. The natural frequencies of roll and pitch are much lower than that of heave, and they increased slightly with the increase of draft. When towing in the following sea, the maximum acceleration of surge, sway and heave has downward trends with the increase of draft, but the change range decreased gradually with the increase of draft. When the draft is 5.0 m(the ratio of draft to bucket height is 0.56), the towing dynamic responses achieve the maximum, which is not conducive to the towing of the platform. When the draft is 6.0 m(the ratio of draft to bucket height is 0.67), the towing dynamic responses are the most stable.
基金This work was financially supported by Xuzhou science and technology plan project of China(No.KC21294).
文摘Paper-based sensing platform is a point of need analytical toolkit for safety testing.However,the sensitivity,specificity,and simplicity are still challenging.Herein,we report a novel strategy(Au/δ-MnO_(2) hollow nanosphere and 3,3′,5,5′-tetramethylbenzidine(TMB)induced test strips for signal-on detection)that can be utilized for hexavalent chromium(Cr^(6+))detection.Interestingly,Cr^(6+)(CrO_(4)^(2−)) as a smart switch can remarkably enhance the oxidase-like activity of Au/δ-MnO_(2) hollow nanosphere.The presence of Cr^(6+) can regulate the surface electronic redistribution of Au/δ-MnO_(2) and adjust the geometric configuration,which leads to the improvement in oxidase-like activity of Au/δ-MnO_(2).As a proof-of-concept application,a visual paper-based sensing platform of Cr^(6+) along with quantitative analysis by the test strips was successfully constructed.This paper-based sensing platform exhibits a linear range with excellent selectivity for other interfering substances and lower limit of detection of 0.09μmol·L^(−1),providing a promising toolkit at-home Cr^(6+) measurement and environmental monitoring.
基金National Key Research and Development Program of China(Grant No.2019YFB2005303)General Fund of the National Natural Science Foundation of China(Grant No.52175066)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2020203090)Hebei Provincial Key Science and Technology Projects in the Colleges and Universities of China(Grant No.ZD2022052)。
文摘With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platforms.However,compared with mechanically driven platforms,the stiffness and damping of the fluid,as well as the coupling effect between the fluid and the structure need to be considered for electro-hydraulic-driven parallel stabilization platforms,making the modal and dynamic response characteristics of the mechanism more complex.With the aim of solving the aforementioned issues,we research the electro-hydraulic driven 3-UPS/S parallel stabilization platform considering the hinge stiffness.Moreover,the characteristic vibration equation of the mechanism is established using the virtual work principle.Subsequently,the variation characteristics of the natural frequency and the vibration response according to the position of the mechanism are analyzed based on the dynamic equation.Finally,the correctness of the model is verified by a modal test and Runge-Kutta methods.This study provides a theoretical basis for the dynamic design of electrohydraulic-driven parallel mechanisms.
基金supported by the National Natural Science Foundation of China(Grant No.52271287).
文摘With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.
文摘In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.
文摘An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.