期刊文献+
共找到650篇文章
< 1 2 33 >
每页显示 20 50 100
The Publication of the Piling Canon in the Late Qing
1
作者 LIU Yi 《Cultural and Religious Studies》 2024年第9期566-574,共9页
Piling Canon refers to a woodblock-printed Chinese Buddhist Canon during the late Qing Dynasty.Despite its historical significance,it has received limited attention from the academia,as its discovery took place after ... Piling Canon refers to a woodblock-printed Chinese Buddhist Canon during the late Qing Dynasty.Despite its historical significance,it has received limited attention from the academia,as its discovery took place after the turn of the 21st century.This study explores the background,supervisor,proofreader,engravers,donors,and other factors that contributed to the publication of the Piling Canon.It was supervised by Buddhist monk Qingrong in Changzhou Tianning Monastery from 1908 to 1926,due to the commission of Yang Wenhui.By investigating the historical records in the colophons of Piling Canon,we found that engraving locations are distributed in Hubei,Yangzhou,and Danyang which engravers operated in groups;the majority of donors were found to be individuals and group forms,social fundraising was included as well.It is noteworthy that Sheng Xuanhuai made a significant contribution in terms of funding.Furthermore,the production of the Piling Canon confirms to the commence of Buddhism revival,as Buddhist scriptures in Jiangnan regions were almost destroyed after the Taiping Rebellion.The research shed light on extensive participation of cultural celebrities,diverse donation forms,and excellent engraving,offering a vivid depiction of Buddhist belief and social landscape in Jiangnan region. 展开更多
关键词 piling Canon Buddhist scriptures Tianning Monastery DONORS Jiangnan
在线阅读 下载PDF
Numerical Simulation and Experimental Study on Interlock Deformation for Roll Formed U-Section Steel Piling 被引量:2
2
作者 FENG Guang-hong ZHANG Pei +2 位作者 ZHANG Hong-liang ZHOU Xu-chang ZHAO Yong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第11期41-45,共5页
The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under t... The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel. 展开更多
关键词 roll formed sheet steel piling INTERLOCK numerical simulation INSTABILITY
原文传递
Port and Marine Structures Made of Sheet Piling with Staggered Toe
3
作者 Doubrovsky Michael Kaluzhnaya Valentina +3 位作者 Adamchuk Nikolay Khonelia Natela Kaluzhniy Aleksey Dubrovska Olga 《Journal of Shipping and Ocean Engineering》 2017年第4期168-173,共6页
Some new approaches to designing and calculation of maritime structures made of sheet piling with staggered toe are considered and discussed. Obtained results allow determination of piles spacing efficiency in stagger... Some new approaches to designing and calculation of maritime structures made of sheet piling with staggered toe are considered and discussed. Obtained results allow determination of piles spacing efficiency in staggered embedment wall. The specificity of interaction of piles in "comb" with the soil foundation Practical application is illustrated by example of calculation. regarding transition from continuous to "comb" wall is investigated. 展开更多
关键词 Sheet piling quay wall staggered toe driving depth.
在线阅读 下载PDF
Improvement of Technological Solutions for Sheet Piling Walls Made of U-Shape Piles
4
《Journal of Civil Engineering and Architecture》 2017年第4期335-341,共7页
As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences th... As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls. 展开更多
关键词 Sheet piling walls steel U-shape piles interlock connections.
在线阅读 下载PDF
Optimal Piling Network Corrosion Protection System for Al-Zubair Harbor
5
作者 Mohammed H. Hafiz Wisam K. Hamdan Ruaa Kaream Salman 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第4期249-257,共9页
Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually pre... Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually preferred. The main aim of this study is to obtain the optimum protection potential that would provide a full cathodic protection for steel piles net-work immersed in sea water at Al-Zubair harbor. The effect of one immeasurable factor (path of anode (χ1)) and two measurable factors (position of anode (χ2) and voltage of power supply (χ3)) on protection potential are studied. Each factor has three different levels (high, medium, and low). Twenty-seven experiments were conducted based on a full factorial design of experiments. The results show that, a sufficient protection for three cathodes can be provided through the electrical circuit connecting them within the appropriate geometric shape.The protection potential is icreased with increasing the voltage of power supply and decreasing of distance between the anode and cathodes (piles network). 展开更多
关键词 Impressed Current Cathodic Protection PILES NETWORK Path of ANODE Position of ANODE OPTIMAL Combination
暂未订购
Simplified approaches for predicting the nonlinear load-displacement response of single pile and pile groups in unsaturated soils
6
作者 Xinting Cheng Sai K.Vanapalli 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3107-3124,共18页
A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influen... A simplified analytical approach is proposed for predicting the load-displacement behavior of single piles in unsaturated soils considering the contribution from the nonlinear shear strength and soil stiffness influenced by matric suction.This approach includes a Modified Load Transfer Model(MLTM)that can predict the nonlinear relationships between the shear stress and pile-soil relative displacement along the pile shaft,and between the pile base resistance and base settlement.The proposed model is also extended for pile groups to incorporate the interaction effects between individual piles.The analytical approach is validated through a comparative analysis with the measurements from two single pile tests and one pile group test.In addition,a finite element analysis using 3D modeling is carried out to investigate the behavior of pile groups in various unsaturated conditions.This is accomplished with a user-defined subroutine that is written and implemented in ABAQUS to simulate the nonlinear mechanical behavior of unsaturated soils.The predictions derived from the proposed analytical and numerical methods compare well with the measurements of a published experimental study.The proposed methodologies have the potential to be applied in geotechnical engineering practice for the rational design of single piles and pile groups in unsaturated soils. 展开更多
关键词 Unsaturated soils Matric suction PILE Pile group Load transfer model
在线阅读 下载PDF
Horizontal bearing capacity of post-expanded arm grouting pile foundations
7
作者 Wenbo Zhu Guoliang Dai +3 位作者 Huiyuan Deng Bo Liu Liji Huang Yingying Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3845-3860,共16页
In order to effectively improve the horizontal bearing capacity of pile foundations,this study proposes post-expanded arm grouting technology and associated pile foundations.The horizontal bearing characteristic of th... In order to effectively improve the horizontal bearing capacity of pile foundations,this study proposes post-expanded arm grouting technology and associated pile foundations.The horizontal bearing characteristic of the post-expanded arm grouting pile was explored through model tests.The test results indicate that the post-expanded arm grouting pile can increase the contact area between the pile and soil,and can improve the strength of the soil.The horizontal bearing capacity of the post-expanded arm grouting pile was approximately 3 times that of the conventional pile.It also shows that the larger the plate diameter ratio or grouting volume,the higher the horizontal bearing capacity of the post-expanded arm grouting pile.The maximum bending moment of the post-expanded arm grouting pile was located at the pile plate,and the displacement zero point of the new pile was higher than that of the conventional pile.The soil resistance at the pile plate was significantly higher than that of conventional piles,indicating that the pile plate effectively enhances the soil resistance.The improved p-y curve model and horizontal bearing capacity calculation method for the post-expanded arm grouting pile were proposed by considering the pile plate diameter factor.This method was finally verified by experimental results.The results of this study can provide a reference for calculating the horizontal bearing capacity of the post-expanded arm grouting pile. 展开更多
关键词 Pile foundations POST-GROUTING Expanded arm pile Improvement of bearing capacity p-y curve model
在线阅读 下载PDF
The Cricket in Times Square(Excerpt)
8
作者 George Selden 《疯狂英语(新悦读)》 2025年第3期53-54,78,共3页
One day,Mario Bellini,a young boy whose parents run a struggling newsstand(报摊)in the Times Square subway station,hears a strange sound amidst the city's hustle and bustle:a cricket chirping.He tracks the sound t... One day,Mario Bellini,a young boy whose parents run a struggling newsstand(报摊)in the Times Square subway station,hears a strange sound amidst the city's hustle and bustle:a cricket chirping.He tracks the sound to a pile of trash and finds a tiny black cricket.Mario carefully takes the cricket to the newsstand,dusts him off and makes a home for him in a matchbox.He is excited to have a new friend,but when Mario's parents arrive,Mama wants him to get rid of the“bug”despite Mario's assurance that crickets are good luck.Peacemaker Papa Bellini decides that the cricket can stay in the newsstand. 展开更多
关键词 city life LUCK CRICKET newsstand family pile trash
在线阅读 下载PDF
Enhanced Load-Settlement Curve Forecasts for Open-Ended Pipe Piles Incorporating Soil Plug Constraints Using Shallow and Deep Neural Networks
9
作者 Luttfi A.AL-HADDAD Mohammed Y.FATTAH +2 位作者 Wissam H.S.AL-SOUDANI Sinan A.AL-HADDAD Alaa Abdulhady JABER 《China Ocean Engineering》 2025年第3期562-572,共11页
This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Levera... This study investigates the load-bearing capacity of open-ended pipe piles in sandy soil, with a specific focus on the impact of soil plug constraints at four levels(no plug, 25% plug, 50% plug, and full plug). Leveraging a dataset comprising open-ended pipe piles with varying geometrical and geotechnical properties, this research employs shallow neural network(SNN) and deep neural network(DNN) models to predict plugging conditions for both driven and pressed installation types. This paper underscores the importance of key parameters such as the settlement value,applied load, installation type, and soil configuration(loose, medium, and dense) in accurately predicting pile settlement. These findings offer valuable insights for optimizing pile design and construction in geotechnical engineering,addressing a longstanding challenge in the field. The study demonstrates the potential of the SNN and DNN models in precisely identifying plugging conditions before pile driving, with the SNN achieving R2 values ranging from0.444 to 0.711 and RMSPE values ranging from 24.621% to 48.663%, whereas the DNN exhibits superior performance, with R2 values ranging from 0.815 to 0.942 and RMSPE values ranging from 4.419% to 10.325%. These results have significant implications for enhancing construction practices and reducing uncertainties associated with pile foundation projects in addition to leveraging artificial intelligence tools to avoid long experimental procedures. 展开更多
关键词 pipe piles soil plug artificial neural network bearing capacity forecasts
在线阅读 下载PDF
Cyclic Response Characteristics of Rigid Piles in Dense Sand Under One-way Oblique Tensile Loads
10
作者 HUANG Ting DAI Guo-liang +2 位作者 TIAN Ying-hui ZHANG Ji-sheng XU Qing-yun 《China Ocean Engineering》 2025年第4期698-707,共10页
The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,... The behavior of rigid piles in sandy soils under one-way cyclic oblique tensile loading represents a critical design consideration for floating renewable devices.These piles,when moored with catenary or taut moorings,experience one-way cyclic tensile loads at inclinations ranging from 0°(horizontal)to 90°(vertical).However,the combined effects of cyclic loading and load inclination remain inadequately understood.This study presents findings from centrifuge tests conducted on rough rigid piles installed in dense sand samples.The results demonstrate that load inclinations significantly influence both cyclic response and ultimate capacity of the piles.Based on the observed cyclic response characteristics,the vertical cyclic load amplitude should not exceed 25%of the ultimate bearing capacity to maintain pile stability.A power expression(with exponent m values ranging from 0.055 to 0.065)is proposed for predicting cumulative pile displacement under unidirectional cyclic loading at inclinations from 0°to 60°.The cyclic response exhibits reduced sensitivity to horizontal cyclic load magnitude,with m-value increasing from 0.06 to 0.14 as load magnitude increases from 0.3 to 0.9.For piles maintaining stability under oblique cyclic loading,the average normalized secant stiffness exceeds 1 and increases with decreasing inclination,indicating enhanced pile stiffness under cyclic loading.For load inclinations below 30°,pile stiffness can be determined using logarithmic function. 展开更多
关键词 PILE centrifuge test oblique load ultimate capacity cyclic response power expression STIFFNESS
在线阅读 下载PDF
Traditional Solution for Foundations in a Lake Environment:Case of the Village Ganviéin the Republic of Benin
11
作者 Babilas Hountondji Lambert KAyitchéhou +1 位作者 François de Paule Codo Martin PAina 《Journal of Environmental & Earth Sciences》 2025年第3期316-328,共13页
The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles... The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles due to the increase in loads on the structures,or the recovery of the foundation mass by injection,which is carried out when voids form between the ground and the wooden foundation elements.The high cost of foundation reinforcement methods led the National Agency for the Development of Tourist Heritage in Benin(ANPT)to replace the wooden foundation piles with reinforced concrete piles in the implementation of the project“reinventing the lakeside city of Ganvié”.This article presents an artisanal technology for the creation of reinforced concrete foundation piles in a lake environment.On-site examples made it possible to evaluate the performance of this artisanal implementation technique.The installation of these piles is carried out following manual drilling,followed by the installation of reinforcement and the pouring of concrete on site.The implementation of reinforced concrete foundation piles in place of the wooden ones studied in this article only impacted the infrastructure of the homes of the lakeside town of Ganviébut not the superstructure,which preserved the old traditional wooden architecture and thatched roofs.Thus,the ambition to move this city of Ganviéfrom the stage of a lake village to that of a floating city is very successful.This will contribute to improving the environment and living conditions of the populations and will promote economic development through tourism. 展开更多
关键词 Wooden Foundation Piles Disorder of Foundations Reinforcement of Foundations Manual Drilling Reinforced
在线阅读 下载PDF
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions
12
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 SLOPE Concrete stabilizing piles Interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Seismic stability analysis of sandy slope with anti-slide pipe piles through shaking table tests and finite element
13
作者 SALEH ASHEGHABADI Mohsen XU Jianmin +2 位作者 JIA Yuyue LIU Junwei WANG Yulin 《Journal of Mountain Science》 2025年第10期3744-3768,共25页
Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-en... Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-ended anti-slide pipe piles embedded in a two-layer sandy slope with differing geotechnical properties.Ten physical models,including five freefield and five pile-reinforced slopes,were tested on a shaking table.Key seismic responses—acceleration,soil displacement,and bending moments—were monitored using accelerometers,strain gauges,and Digital Image Correlation(DIC).Complementary numerical simulations using Abaqus with a Mohr–Coulomb model validated experimental results.Soil displacement in free-field models under 0.25g shaking was about 3.5 times greater than in reinforced slopes.Bending moments increased with seismic intensity,peaking at depths around five times the pile diameter.Limitations including simplified two-layer soil representation,idealized seismic inputs,and boundary effects inherent to laboratory models restrict direct field application but enable controlled analysis.By combining physical experiments with numerical modeling,the study provides a robust and validated framework for seismic slope stabilization.This integrated approach enhances understanding of soil–pile interaction under seismic loads and offers targeted insights for developing safer and more reliable geotechnical design strategies in earthquake-prone areas. 展开更多
关键词 Anti-slide piles Shaking table tests Sloping lands Soil-pile models Free-field models
原文传递
Centrifuge modelling of permeable pipe pile in consideration of pile driving process, soil consolidation, and axial loading
14
作者 Meijuan Xu Pengpeng Ni Guoxiong Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3861-3871,共11页
Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take... Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect. 展开更多
关键词 Permeable pipe pile Centrifuge modelling Pore pressure buildup CONSOLIDATION Bearing capacity
在线阅读 下载PDF
Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas
15
作者 Yujie Li Zhongju Feng +2 位作者 Fuchun Wang Jiang Guan Xiaoqian Ma 《Computer Modeling in Engineering & Sciences》 2025年第5期1549-1573,共25页
To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas,a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established.The ... To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas,a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established.The 0.2-0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body.The results show that the soil layer covering the bedrock amplifies the peak pile acceleration,and the amplifying effect decreases with increasing seismic wave intensity.However,bedrock has less of an effect on peak acceleration.The relative pile displacement shows the mechanical properties of elastic long piles.The pile foundation generates a large bending moment at the bedrock face and the upper soil layer interface,and a large shear force at the pile top and the soft-hard soil body interface.The relative displacement,bending,and shear bearing characteristics of the pile foundations on the upper and lower plates of the fault are significantly different.The deformation characteristics are affected by faults in a region ten times the pile diameter.Analysis of the dynamic p-y curves shows that the soil resistance on the pile side of the lower plate at the same depth is greater than that of the upper plate.Sensitivity of the dynamic response of pile foundations on either side of the fault to the effects of seismic intensity and distance between the pile foundation and the fault:distance l seismic intensity q. 展开更多
关键词 Bridge pile foundation seismic response FAULT upper plate effect mechanical behavior numerical simulate
在线阅读 下载PDF
Identification of bored pile defects utilizing torsional low strain integrity test:Theoretical basis and numerical analysis
16
作者 Yunpeng Zhang Hongxuan Ji +2 位作者 Lulu Zhang M.Hesham El Naggar Wenbing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3035-3053,共19页
The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and be... The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and better adaptability for existing pile testing.However,it lacks a comprehensive understanding of the authentic three-dimensional(3D)strain wave propagation mechanism,particularly wave reflection and transmission at defects.To address this gap,a novel 3D theoretical framework is introduced in this context to model the authentic 3D wave propagation during the TLSIT.The proposed approach is validated by comparing its results with those obtained from 3D finite element method(FEM)simulations and simplified 1D(one-dimensional)and 3D analytical solutions.Additionally,a parametric study is conducted to enhance insights into the formation mechanism of high-frequency interference observed during the TLSIT.Finally,a defect identification study is performed to provide guidance for interpreting the wave spectrum in terms of defect characteristics. 展开更多
关键词 Pile foundations Non-destructive integrity test TORSION 3D strain wave propagation Low strain High-frequency interference
在线阅读 下载PDF
Dynamic Response and Failure Analysis of Steel Sheet Pile Support Structures in Bank Slopes under Pile Driving Impact Loads
17
作者 Ling Ji Nan Jiang +3 位作者 Yingbo Ren Tao Yin Haibo Wang Bing Cheng 《Computer Modeling in Engineering & Sciences》 2025年第7期267-288,共22页
During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile str... During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile structures under dynamic loading conditions.Based on the Huarong Coal Wharf project,various support schemes are analyzed using numerical simulation methods to calculate and compare slope stability coefficients.The optimal scheme is then identified.Under the selected support scheme,a numerical model of double-row suspended steel sheet piles is developed to investigate the dynamic response of the pile structures under pile driving loads.A time-history analysis is performed to assess the slope’s dynamic stability.The results show that the maximum displacements of the upper and lower steel sheet pile rows are 2.51 and 3.14 cm,respectively.The maximum principal stresses remain below 20 MPa in both rows,while the maximum von Mises stresses are 20.85 MPa for the upper row and 25.40 MPa for the lower row.The dominant frequencies of the steel sheet pile structures fall between 30 and 35 Hz,with a frequency bandwidth ranging from 0 to 500 Hz.The stability coefficient of the pile structures varies over time during the pile driving process,ultimately reaching a value of 1.26—exceeding the required safety threshold.This research provides practical guidance for designing support systems in wharf piling projects and offers a reliable basis for evaluating the safety performance of steel sheet piles in bank slopes. 展开更多
关键词 Bank slope steel sheet pile dynamic response failure analysis safety assessment
在线阅读 下载PDF
Experimental and Numerical Study on Local Scour of Pile Group Foundations for Offshore Wind Turbines Under Wave-Current Interactions
18
作者 YU Heng ZHANG Yu-hang +1 位作者 JIA Jia-yu ZHANG Jin-feng 《China Ocean Engineering》 2025年第3期493-503,共11页
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi... Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth. 展开更多
关键词 offshore wind turbines pile group foundation local scour wave-current interaction numerical simulation
在线阅读 下载PDF
Numerical Simulation of M-Shaped Multi-Row Pile-Supported Foundation Pit Excavation Based on ABAQUS
19
作者 Meng Chen Chuanteng Huang +3 位作者 Shuang Pu Jilun Cai Zuocai Li Yufu Huang 《Journal of World Architecture》 2025年第3期55-63,共9页
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation... The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems. 展开更多
关键词 M-shaped multi-row piles Foundation pit excavation Numerical simulation ABAQUS
在线阅读 下载PDF
Influence of helical blades on the horizontal bearing capacity of spiral piles for offshore wind power
20
作者 DING Hongyan HAN Tianqi +2 位作者 ZHANG Puyang LUO Jianhua LE Conghuan 《Journal of Southeast University(English Edition)》 2025年第3期314-324,共11页
Spiral pile foundations,as a promising type of foundation,are of significant importance for the development of offshore wind energy,particularly as it moves toward deeper waters.This study conducted a physical experim... Spiral pile foundations,as a promising type of foundation,are of significant importance for the development of offshore wind energy,particularly as it moves toward deeper waters.This study conducted a physical experiment on a three-spiral-pile jacket foundation under deep-buried sandy soil conditions.During the experiment,horizontal displacement was applied to the structure to thoroughly investigate the bearing characteristics of the three-spiral-pile jacket foundation.This study also focused on analyzing the bearing mechanisms of conventional piles compared with spiral piles with different numbers of blades.Three different working conditions were set up and compared,and key data,such as the horizontal bearing capacity,pile shaft axial force,and spiral blade soil pressure,were measured and analyzed.The results show the distinct impacts of the spiral blades on the compressed and tensioned sides of the foundation.Specifically,on the compressed side,the spiral blades effectively enhance the restraint of the soil on the pile foundation,whereas on the tensioned side,an excessive number of spiral blades can negatively affect the structural tensile performance to some extent.This study also emphasizes that the addition of blades to the side of a single pile is the most effective method for increasing the bearing capacity of the foundation.This research aims to provide design insights into improving the bearing capacity of the foundation. 展开更多
关键词 offshore wind power spiral pile helical blade bearing capacity
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部