期刊文献+
共找到6,737篇文章
< 1 2 250 >
每页显示 20 50 100
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
1
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators Machine picking Yield improvement
在线阅读 下载PDF
Strength prediction and cuttability identification of rock based on monitoring while cutting(MWC)using a conical pick
2
作者 Shaofeng Wang Yumeng Wu +2 位作者 Xinlei Shi Xin Cai Zilong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1025-1043,共19页
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod... Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model. 展开更多
关键词 conical picks strength prediction cuttability identification machine learning monitoring while cutting
在线阅读 下载PDF
Water-induced changes in mechanical response and fragmentation behavior of rocks exposed to conical pick indentation:Implications for rock cuttability improvement
3
作者 Xin Cai Jifeng Yuan +5 位作者 Zilong Zhou Shaofeng Wang Yunming Wang Jixiong Zhang Dan Ma Lu Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5465-5478,共14页
Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ... Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations. 展开更多
关键词 Rock-cutting Water-weakening effects Conical pick Peak cutting force Specific energy Rock cuttability improvement
在线阅读 下载PDF
Intelligent phase picking of microseismic signals based on ResUNet in underground engineering
4
作者 OU Li-yuan HUANG Lin-qi +3 位作者 ZHAO Yun-ge WANG Zhao-wei SHEN Hui-ming LI Xi-bing 《Journal of Central South University》 2025年第9期3314-3335,共22页
With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stabi... With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stability assessment.To address problems in existing methods,such as low data processing efficiency and poor phase recognition accuracy under low signal-to-noise ratio(SNR)conditions in complex geological environments,this study proposes an intelligent phase picking model based on ResUNet.The model integrates the residual learning mechanism of ResNet with the multi-scale feature extraction capability of UNet,effectively mitigating the vanishing gradient problem in deep networks.It also achieves cross-layer fusion of shallow detail features and deep semantic features through skip connections in the encoder-decoder structure.Compared with traditional short-time average/long-time average(STA/LTA)algorithms and advanced neural network models such as PhaseNet and EQTransformer,ResUNet shows superior performance in picking P-and S-wave phases.The model was trained on 400000 labeled microseismic signals from the Stanford earthquake dataset(STEAD)and was successfully applied to the Shizhuyuan polymetallic mine in Hunan Province,China.The results demonstrate that ResUNet achieves high picking accuracy and robustness in complex geological conditions,offering reliable technical support for early warning of disasters such as rockburst in deep underground engineering. 展开更多
关键词 underground engineering microseismic monitoring phase picking deep learning ResUNet architecture rock fracture early warning
在线阅读 下载PDF
Applying deep learning to teleseismic phase detection and picking:PcP and PKiKP cases
5
作者 Congcong Yuan Jie Zhang 《Artificial Intelligence in Geosciences》 2025年第1期25-32,共8页
The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking ... The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis. 展开更多
关键词 Earth’s interior Teleseismic phases Phase detection Phase picking Deep learning
在线阅读 下载PDF
Perfect Pick系统订单拣选策略优化研究
6
作者 马云峰 邓力 余佳祥 《物流科技》 2024年第22期1-7,共7页
作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对... 作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对比分析;以货箱搬运次数最少为目标,分别构建订单分批与订单排序两种拣选策略的整数规划模型,并设计贪婪算法进行求解。通过数值实验验证,订单排序策略在所有订单规模中均优于订单分批策略,根据仓库的订单规模,合理设置拣选台最大容量并选择合理的拣选策略,能够更好地提高拣选效率、优化仓库作业环节。 展开更多
关键词 Perfect pick系统 订单拣选 订单分批 订单排序
在线阅读 下载PDF
Automatic velocity picking based on optimal key points tracking algorithm 被引量:1
7
作者 Yong-Hao Wang Wen-Kai Lu +3 位作者 Song-Bai Jin Yang Li Yu-Xuan Li Xiao-Feng Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期903-917,共15页
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating... Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost. 展开更多
关键词 Velocity picking Multi-object tracking Density clustering Kalman filter
原文传递
Niemann-Pick C1蛋白在埃博拉病毒感染中的作用及其靶向药物研究进展 被引量:2
8
作者 吴海燕 陈国江 《中国药理学与毒理学杂志》 CAS 北大核心 2024年第2期153-160,共8页
埃博拉病毒属丝状病毒科,具有高传染性,能引起人类和灵长类动物出现严重出血热等症状,病死率高达90%。Niemann-Pick C1(NPC1)蛋白是埃博拉病毒感染过程中表达于宿主细胞内体膜上的一个重要受体,其与埃博拉病毒被组织蛋白酶裂解的糖蛋白(... 埃博拉病毒属丝状病毒科,具有高传染性,能引起人类和灵长类动物出现严重出血热等症状,病死率高达90%。Niemann-Pick C1(NPC1)蛋白是埃博拉病毒感染过程中表达于宿主细胞内体膜上的一个重要受体,其与埃博拉病毒被组织蛋白酶裂解的糖蛋白(GP)的相互作用是病毒感染宿主的关键环节,介导病毒囊膜与内体膜的融合,进而将病毒基因组释放到宿主细胞。近年来,将NPC1蛋白作为广谱抗丝状病毒药物靶点研发的小分子抑制剂、单克隆抗体和基因治疗药物均有突破性进展。本文介绍了NPC1的结构及其在埃博拉病毒感染中的作用,并对靶向NPC1的小分子抑制剂、单克隆抗体药物和基因治疗药物的研究现状进行总结。 展开更多
关键词 埃博拉病毒 Niemann-pick C1蛋白 小分子抑制剂 抗体 基因治疗
暂未订购
A regression approach for seismic first-break picking
9
作者 Huan Yuan San-Yi Yuan +2 位作者 Jie Wu Wen-Jing Sang Yu-He Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1584-1596,共13页
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois... The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application. 展开更多
关键词 First-break picking Low signal-to-noiseratio Regression BiLSTM TRAVELTIME Geometry Noisy seismic data
原文传递
First-Arrival Picking Method for Active Source Data with Ocean Bottom Seismometers Based on Spatial Waveform Variation Characteristics
10
作者 LIU Hongwei XING Lei +3 位作者 ZHU Henghua ZHANG Jin ZHANG Jing LIU Huaishan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期970-980,共11页
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo... The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data. 展开更多
关键词 first-arrival picking spatial waveform variation label cross-correlation superposition method
在线阅读 下载PDF
Intelligent evaluation of mean cutting force of conical pick by boosting trees and Bayesian optimization
11
作者 LIU Zi-da LIU Yong-ping +3 位作者 SUN Jing YANG Jia-ming YANG Bo LI Di-yuan 《Journal of Central South University》 CSCD 2024年第11期3948-3964,共17页
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f... Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF. 展开更多
关键词 rock cutting conical pick mean cutting force boosting trees Bayesian optimization
在线阅读 下载PDF
新型穿戴式辅助人工采摘菠萝装置设计 被引量:1
12
作者 郭婷 周峥 +2 位作者 金悦 桂亮 王永泉 《机械设计》 北大核心 2025年第5期16-21,共6页
菠萝作为多年生植物,成熟后周围长有不规则分布的菠萝幼芽,不能利用大型机械采收。由于菠萝外皮粗糙、植株锋利、高度不均等生物特性,人工采摘过程中存在易扎手、果实重、频繁弯腰疲劳等问题。为了减小人工劳动量同时保护菠萝幼苗,文中... 菠萝作为多年生植物,成熟后周围长有不规则分布的菠萝幼芽,不能利用大型机械采收。由于菠萝外皮粗糙、植株锋利、高度不均等生物特性,人工采摘过程中存在易扎手、果实重、频繁弯腰疲劳等问题。为了减小人工劳动量同时保护菠萝幼苗,文中设计了一种新型可穿戴的菠萝采摘装置,分别对采摘模块、外骨骼模块和控制模块进行设计;对菠萝采摘过程进行受力分析,选择转矩为3.4 N·m的掰断电机和转矩为6 N·m的牵拉电机;采用3D打印技术实现采摘爪、变刚度关节及部分零配件加工,经过装配、穿戴和调试后,与人工徒手采摘进行对比,该装置运行效果良好,总体采摘时间接近。 展开更多
关键词 菠萝采摘 采摘爪 可穿戴 变刚度关节
原文传递
基于改进YOLOv5的柑橘采摘机器人识别定位方法 被引量:2
13
作者 潘海鸿 钱广坤 +3 位作者 陈希良 申毅莉 高港 陈琳 《传感器与微系统》 北大核心 2025年第5期57-61,共5页
为实现柑橘果实的准确识别与定位,提出一种结合YOLOv5模型与Realsense深度相机的识别定位方法。针对户外场景下的适用性问题,对YOLOv5模型进行改进,引入RepGhost结构以提高算法推理速度;在颈部网络中以双向特征金字塔网络(BiFPN)替换原... 为实现柑橘果实的准确识别与定位,提出一种结合YOLOv5模型与Realsense深度相机的识别定位方法。针对户外场景下的适用性问题,对YOLOv5模型进行改进,引入RepGhost结构以提高算法推理速度;在颈部网络中以双向特征金字塔网络(BiFPN)替换原始特征融合网络,充分融合高层和底层特征;改进GSConv卷积模块,保证算法提取能力的前提下,减小算法参数。以识别算法获取的目标像素坐标为基础,通过深度对齐原理与空间定位原理,获取柑橘中心点的距离与三维空间坐标,进而定位柑橘目标的空间位置。实验结果表明:改进算法识别精度达到97.5%,推理速度达到9.8 ms/帧,可满足实时柑橘目标识别定位需求,可为柑橘果园自动采摘提供技术支持。 展开更多
关键词 定位识别 自动采摘 深度相机 果实识别
在线阅读 下载PDF
基于树枝振动特性的香榧采摘机设计 被引量:2
14
作者 侯雨雷 王雷 +3 位作者 王航 李岳 曾达幸 邬玉芬 《机械设计》 北大核心 2025年第2期75-82,共8页
香榧采摘作业主要依靠人工进行,榧农缺乏有效的香榧采摘设备。针对其果实采摘现状及特点,研究采摘振动参数,确定采摘适宜方式,并通过采摘试验验证振动参数的正确性。对香榧树枝进行谐响应仿真分析,并结合香榧果实分离力参数测试试验结果... 香榧采摘作业主要依靠人工进行,榧农缺乏有效的香榧采摘设备。针对其果实采摘现状及特点,研究采摘振动参数,确定采摘适宜方式,并通过采摘试验验证振动参数的正确性。对香榧树枝进行谐响应仿真分析,并结合香榧果实分离力参数测试试验结果,确定果实采摘振动参数,进而设计香榧采摘机机械结构,主要包括夹持机构和振动机构,制作样机并开展香榧采摘试验。 展开更多
关键词 香榧采摘 树枝振动 结构设计 采摘试验
原文传递
对称式蔬菜单株自动嫁接机设计与试验 被引量:2
15
作者 王家胜 李洋鹏 +1 位作者 高春风 王东伟 《农业机械学报》 北大核心 2025年第1期141-150,共10页
根据茄科蔬菜贴接法嫁接工艺要求,设计了一种对称式蔬菜单株自动嫁接机,在PLC系统控制下,可以连续自动完成对砧穗木苗株的夹取传送、切削、对接以及对嫁接夹裁切、持夹上夹、夹苗固定等功能。重点设计了构成嫁接机的取送苗机械臂、夹持... 根据茄科蔬菜贴接法嫁接工艺要求,设计了一种对称式蔬菜单株自动嫁接机,在PLC系统控制下,可以连续自动完成对砧穗木苗株的夹取传送、切削、对接以及对嫁接夹裁切、持夹上夹、夹苗固定等功能。重点设计了构成嫁接机的取送苗机械臂、夹持苗机械手、砧穗木切削装置、裁夹上夹装置以及控制系统,确定了各机构关键结构参数以及控制流程。选择辣椒苗为嫁接对象,开展了蔬菜单株自动嫁接机样机性能试验,试验结果表明,各环节执行时间越短,即加快执行速度,嫁接合格率均会下降,影响程度由大到小依次为对接苗时间、上夹时间和取送切苗时间。嫁接苗损伤率的影响则集中在取送切苗环节,该环节执行速度越快,嫁接苗损伤率会有所上升。在各环节执行时间优化基础上,分别对主夹指高度和砧穗木切削装置刀刃倾角进行单因素结构优化试验,获得最优主夹指高度和刀刃倾角分别为13 mm和25°。优化后蔬菜单株自动嫁接机嫁接效率为300株/h,损伤率为2.5%,嫁接合格率为94.8%,达到了设计要求。 展开更多
关键词 嫁接机 茄科蔬菜 机构设计 自动取苗 嫁接夹裁切
在线阅读 下载PDF
苹果机械化采收技术与装备研究现状 被引量:1
16
作者 陈青 吴玄博 +3 位作者 殷程凯 郭自良 丁文芹 周宏平 《林业工程学报》 北大核心 2025年第3期13-24,共12页
苹果作为重要的水果,以其较高的经济价值,成为农民增收的重要来源。然而,苹果在采收过程中存在劳动力短缺、采摘效率低下等问题,对苹果产业的发展构成了严峻挑战,因此,加强苹果机械化采收技术及配套装备的开发,对于提高收获效率和保证... 苹果作为重要的水果,以其较高的经济价值,成为农民增收的重要来源。然而,苹果在采收过程中存在劳动力短缺、采摘效率低下等问题,对苹果产业的发展构成了严峻挑战,因此,加强苹果机械化采收技术及配套装备的开发,对于提高收获效率和保证果品质量起着重要作用。在此背景下,首先综述了苹果振动式采收、采摘作业平台、采摘机器人3类机械化采收技术,并对目前国内外已商品化的采收设备进行概述。其中,分别探讨了苹果振动采收机械及减损技术进展,以及与种植模式相结合实现规模化收获的情况;梳理了国内外苹果采摘作业平台的差异化发展,分类总结了两种采摘作业平台的研究特点;介绍了苹果采摘机器人研究现状,归纳出国内多臂协同采摘机器人研发热点。在此基础上,根据国内对于鲜食苹果成熟度和品质的高度要求,以及目前农业智能化机器人的发展方向,详细阐述了苹果采摘机器人在果实识别、定位以及精准抓取方面所涉及的核心技术,旨在确保机器人准确无误地抓取识别选中的苹果。最后,分析了3类苹果采收机械现存的问题及未来发展方向,并进一步总结了农机与农艺结合、降低设备成本的整体研究趋势,以期为国内苹果机械化采收技术和装备研发提供借鉴。 展开更多
关键词 苹果采摘 振动式采收 采摘作业平台 采摘机器人 识别定位 末端执行器
在线阅读 下载PDF
穴盘苗夹取力学试验台设计与测试分析 被引量:1
17
作者 韩绿化 王琰 +4 位作者 杜学武 许倩倩 马国鑫 刘洋 毛罕平 《农业工程学报》 北大核心 2025年第7期47-55,共9页
针对穴盘苗自动移栽苗钵夹取受力不清的问题,设计了一种由直线模组带动的多针钳夹式取苗力学试验台。采用气缸驱动方式构造出活动可调的多针夹钵取苗执行器,配置滚珠丝杠直线滑台模组驱动夹取执行器,组合位移传感器、拉压力传感器以及... 针对穴盘苗自动移栽苗钵夹取受力不清的问题,设计了一种由直线模组带动的多针钳夹式取苗力学试验台。采用气缸驱动方式构造出活动可调的多针夹钵取苗执行器,配置滚珠丝杠直线滑台模组驱动夹取执行器,组合位移传感器、拉压力传感器以及高精度控制与数据采集系统精准检测取苗瞬态过程的位移量和作用力值变化。开展夹钵取苗力学测试,研究发现取苗过程是滑针斜插、平行夹持、提升移位等多种夹取动作交织组合作用的过程,苗钵在滑针斜插与平行夹持作用下有集聚松动脱盘的趋势,夹钵取苗的作用力主要用来克服苗钵与穴孔之间建立的粘附力。进行取苗力学特性分析,结果显示粗细两种夹取针的斜插力有极显著性差异(P<0.01),取苗运行速度对脱盘力、提取力的影响极显著(P<0.01),两种夹取作用力有相关性。整体上弹性纤细夹取针的取苗作用对苗钵的扰动小,成功取苗需要夹取针深入夹持苗钵脱盘。采用插-夹-拔组合式取苗操作,苗钵的完整率在97%以上。研究结果可为穴盘苗夹取受力分析、高效低损取苗机构优化设计提供指导。 展开更多
关键词 穴盘苗 移栽机 取苗机构 力学测试 脱盘力 提取力
在线阅读 下载PDF
蔬菜密植移栽斜置式自动取投苗装置设计与试验 被引量:2
18
作者 白晓虎 杜国静 +3 位作者 张子浩 邱硕 赵博 田素博 《农业机械学报》 北大核心 2025年第5期300-308,共9页
针对密植蔬菜半自动移栽作业效率低的问题,本文设计一种用于A5-1200型高密度移栽机斜置式自动取投苗装置。钵苗盘和取投臂均与水平方向倾斜45°布置,取投苗爪在取苗位置和投苗位置之间直线往复运动,缩短了取苗行程。取投苗爪在取投... 针对密植蔬菜半自动移栽作业效率低的问题,本文设计一种用于A5-1200型高密度移栽机斜置式自动取投苗装置。钵苗盘和取投臂均与水平方向倾斜45°布置,取投苗爪在取苗位置和投苗位置之间直线往复运动,缩短了取苗行程。取投苗爪在取投臂上的安装位置固定,与钵苗间距和投苗杯间距对应,省略了分苗环节。钵苗盘移位机构通过横向移动和纵向移动将钵苗输送到取苗位置,实现整排间隔取苗。传动部件采用滚珠丝杠模组,驱动采用步进电机,以PLC为控制器,实现了运动位置精确控制。通过单因素试验分析取投臂回程速度、取投苗爪插入深度和取投苗爪入土角对取投苗效果的影响规律,设计Box-Behnken响应面试验确定最优工作参数。试验结果表明,当取投臂回程速度为300 mm/s、取投苗爪插入深度为31 mm、取投苗爪入土角为10°时,实际取投成功率为97.0%。配备斜置式自动取投苗装置后,A5-1200型高密度移栽机栽植能力可达到7200株/h,满足密植移栽技术要求。 展开更多
关键词 移栽机 密植移栽 斜置式 取投苗装置 移位机构
在线阅读 下载PDF
自然环境下柑橘采摘机器人避障规划研究 被引量:1
19
作者 鲍秀兰 包有刚 +3 位作者 马萧杰 马志涛 任梦涛 李善军 《农业机械学报》 北大核心 2025年第2期420-428,共9页
针对柑橘枝-叶-果丛生密布、位姿随机生长情况,为了实现对内生交错和枝果层叠的果实安全交互采摘,本文提出了一种柑橘避障采摘方法。为了提高定位精度和采摘效率,将手眼标定问题转换为求解T_(1)X=XT_(2)的问题,完成了相机坐标系到机械... 针对柑橘枝-叶-果丛生密布、位姿随机生长情况,为了实现对内生交错和枝果层叠的果实安全交互采摘,本文提出了一种柑橘避障采摘方法。为了提高定位精度和采摘效率,将手眼标定问题转换为求解T_(1)X=XT_(2)的问题,完成了相机坐标系到机械臂基坐标系的标定;针对自然环境下柑橘开心树形进行了基于点云密度的树木骨架提取,并通过点密度阈值法对枝干点云进行降噪处理,提高运算速度;利用八叉树地图法进行枝干障碍物地图搭建,通过层次包围盒法拟合机械臂并进行碰撞检测,以时间最优为目标,提出一种符合采摘农艺需求的改进RRT-connect避障规划算法,在RRT-connect算法上引入目标偏置,对采样点进行优选导向。为验证该避障方法的可行性,以标准矮化密植栽培柑橘果园为研究对象,搭建了采摘机器人避障系统。针对自然环境下果树内部和贴近树干生长柑橘果实分别进行多组避障采摘试验。试验结果表明,针对贴近树干生长果实的避障运动时间为9.5 s,避障采摘成功率为91%;针对果树内部生长的果实避障运动时间为10.5 s,避障采摘成功率为88%。 展开更多
关键词 柑橘 采摘机器人 自然环境 避障规划
在线阅读 下载PDF
名优茶机采关键技术及其装备研究现状和发展趋势 被引量:3
20
作者 叶春 赵爽 +4 位作者 徐光浩 刘和来 陈道根 吴罗发 舒时富 《中国茶叶》 2025年第5期9-15,共7页
随着我国茶产业的迅速发展,名优茶采摘环节关键技术装备缺乏、自动化程度低等问题日益凸显。文章综述了名优茶采摘环节技术装备的研究现状,系统归纳了近年来名优茶采茶机在鲜叶识别、目标定位、采摘末端执行器及整机方面的研发及推广应... 随着我国茶产业的迅速发展,名优茶采摘环节关键技术装备缺乏、自动化程度低等问题日益凸显。文章综述了名优茶采摘环节技术装备的研究现状,系统归纳了近年来名优茶采茶机在鲜叶识别、目标定位、采摘末端执行器及整机方面的研发及推广应用情况,分析了不同方法和装备的技术特点,总结了其优势和不足,并针对目前名优茶采摘技术装备短板,指出了名优茶采摘机器人研发面临的挑战和未来的发展趋势。对于如何实现名优茶全自动化采摘,文章认为对茶叶进行精准定位识别、采摘路径规划、末端执行器的优化设计及鲜叶分级装备研发是其必要措施。 展开更多
关键词 名优茶 采摘 识别 定位
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部