The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and...The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL 11 in plant light signal transduction, a plant expression vector of OsPILll was constructed and introduced into tobacco. When grown under continuous red light, OsPILll-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPILll is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.展开更多
Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germi- nation to vegetational architecture in Arabidopsis. However, information regarding the functions of the PI...Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germi- nation to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter above- ground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expres- sion is probably involved in photomorphogenesis in rice.展开更多
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to t...Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.展开更多
Leaf senescence can be triggered and promoted by a large number of developmental and environmental fac- tors. Numerous lines of evidence have suggested an involvement of phytochromes in the regulation of leaf senescen...Leaf senescence can be triggered and promoted by a large number of developmental and environmental fac- tors. Numerous lines of evidence have suggested an involvement of phytochromes in the regulation of leaf senescence, but the related signaling pathways and physiological mechanisms are poorly understood. In this study, we initially identi- fied phytochrome-interacting factors (PIFs) 3, 4, and 5 as putative mediators of leaf senescence. Mutations of the PIF genes resulted in a significantly enhanced leaf longevity in age-triggered and dark-induced senescence, whereas overexpressions of these genes accelerated age-triggered and dark-induced senescence in Arabidopsis. Consistently, loss-of-function of PIF4 attenuated dark-induced transcriptional changes associated with chloroplast deterioration and reactive oxygen species (ROS) generation. ChlP-PCR and DualoLuciferase assays demonstrated that PIF4 can activate chlorophyll degradation regulatory gene NYE1 and repress chloroplast activity maintainer gene GLK2 by binding to their promoter regions. Finally, dark-induced ethylene biosynthesis and ethylene-induced senescence were both dampened in pif4, suggesting the involvement of PIF4 in both ethylene biosynthesis and signaling pathway. Our study provides evidence that PIF3, 4, and 5 are novel positive senes- cence mediators and gains an insight into the mechanism of light signaling involved in the regulation of leaf senescence.展开更多
PHYTOCHROME-INTERACTING FACTORs (PIFs) are members of the basic helix-loop-helix (bHLH) family of transcription factors in Arabidopsis. Since their discovery in phytochrome-mediated light signaling pathways, recen...PHYTOCHROME-INTERACTING FACTORs (PIFs) are members of the basic helix-loop-helix (bHLH) family of transcription factors in Arabidopsis. Since their discovery in phytochrome-mediated light signaling pathways, recent studies have unraveled new functions of PIFs in integrating multiple signaling pathways not only through their role as transcription factors directly targeting gene expression but also by interacting with diverse groups of factors to optimize plant growth and development. These include endogenous (e.g., hormonal) as well as abiotic (light, circadian, and elevated temperature) and biotic (defense responses) pathways. PIFs interact with key factors in each of these pathways and tailor the outcome of the signal integration among these pathways. This review discusses the roles of PIFs as pivotal signal integrators in regulating plant growth and development.展开更多
基金supported by grants from the Chinese National Natural Science Foundation (Grant No. 30971744)the Chinese Ministry of Agriculture(Grant No. 2009ZX08001-029B)the Shandong Natural Science Funds for Distinguished Young Scholar,China (Grant No. JQ200911)
文摘The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL 11 in plant light signal transduction, a plant expression vector of OsPILll was constructed and introduced into tobacco. When grown under continuous red light, OsPILll-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPILll is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.
基金supported by grants from the National Natural Science Foundation of China (31270232 and 30971744)the Shandong Natural Science Funds for Distinguished Young Scholars (JQ200911)
文摘Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germi- nation to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter above- ground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expres- sion is probably involved in photomorphogenesis in rice.
基金This work was supported by the National Natural Science Foundation of China(31900609)the National Key Research and Development Program of China(2017YFA0503802)+1 种基金the National Natural Science Foundation of China(31530085,31900207,and 32000183)the Science and Technology Commission of Shanghai Municipality(18DZ2260500).
文摘Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.
文摘Leaf senescence can be triggered and promoted by a large number of developmental and environmental fac- tors. Numerous lines of evidence have suggested an involvement of phytochromes in the regulation of leaf senescence, but the related signaling pathways and physiological mechanisms are poorly understood. In this study, we initially identi- fied phytochrome-interacting factors (PIFs) 3, 4, and 5 as putative mediators of leaf senescence. Mutations of the PIF genes resulted in a significantly enhanced leaf longevity in age-triggered and dark-induced senescence, whereas overexpressions of these genes accelerated age-triggered and dark-induced senescence in Arabidopsis. Consistently, loss-of-function of PIF4 attenuated dark-induced transcriptional changes associated with chloroplast deterioration and reactive oxygen species (ROS) generation. ChlP-PCR and DualoLuciferase assays demonstrated that PIF4 can activate chlorophyll degradation regulatory gene NYE1 and repress chloroplast activity maintainer gene GLK2 by binding to their promoter regions. Finally, dark-induced ethylene biosynthesis and ethylene-induced senescence were both dampened in pif4, suggesting the involvement of PIF4 in both ethylene biosynthesis and signaling pathway. Our study provides evidence that PIF3, 4, and 5 are novel positive senes- cence mediators and gains an insight into the mechanism of light signaling involved in the regulation of leaf senescence.
基金We acknowledge support by grants from the National Institutes of Health (1R01 GM-114297), National Science Foundation (MCB- 1543813), U.S.-Israel Binationat Science Foundation (BSF#2015316) to E.H., and Rural Development Administration, Republic of Korea (P J01104001) to J.-I.K.
文摘PHYTOCHROME-INTERACTING FACTORs (PIFs) are members of the basic helix-loop-helix (bHLH) family of transcription factors in Arabidopsis. Since their discovery in phytochrome-mediated light signaling pathways, recent studies have unraveled new functions of PIFs in integrating multiple signaling pathways not only through their role as transcription factors directly targeting gene expression but also by interacting with diverse groups of factors to optimize plant growth and development. These include endogenous (e.g., hormonal) as well as abiotic (light, circadian, and elevated temperature) and biotic (defense responses) pathways. PIFs interact with key factors in each of these pathways and tailor the outcome of the signal integration among these pathways. This review discusses the roles of PIFs as pivotal signal integrators in regulating plant growth and development.