期刊文献+
共找到3,691篇文章
< 1 2 185 >
每页显示 20 50 100
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
1
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA machine learning
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
2
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
3
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
A Comparison among Different Machine Learning Algorithms in Land Cover Classification Based on the Google Earth Engine Platform: The Case Study of Hung Yen Province, Vietnam
4
作者 Le Thi Lan Tran Quoc Vinh Phạm Quy Giang 《Journal of Environmental & Earth Sciences》 2025年第1期132-139,共8页
Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status ... Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province. 展开更多
关键词 Google Earth Engine Land Cover LANDSAT machine learning algorithm
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
5
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
6
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling Genetic algorithm(GA) machine learning Gravity data Mineral exploration
在线阅读 下载PDF
Construction and validation of a machine learning algorithm-based predictive model for difficult colonoscopy insertion
7
作者 Ren-Xuan Gao Xin-Lei Wang +6 位作者 Ming-Jie Tian Xiao-Ming Li Jia-Jia Zhang Jun-Jing Wang Jing Gao Chao Zhang Zhi-Ting Li 《World Journal of Gastrointestinal Endoscopy》 2025年第7期149-161,共13页
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr... BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification. 展开更多
关键词 COLONOSCOPY Difficulty of colonoscopy insertion machine learning algorithms Predictive model Logistic regression Least absolute shrinkage and selection operator regression Random forest
暂未订购
Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine
8
作者 LI Qingwei FU Can +2 位作者 XUE Wenli WEI Yongqiang SHEN Zhiwen 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期252-261,共10页
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t... To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability. 展开更多
关键词 lithium-ion battery state of health(SOH) extreme learning machine(ELM) differential evolution(DE)algorithm
原文传递
Quantification of the concrete freeze-thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
9
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai-Tibet Plateau(QTP)is the primary issue in frost resistant concrete design,which is one of the challenges that the QTP engineering manag... The reasonable quantification of the concrete freezing environment on the Qinghai-Tibet Plateau(QTP)is the primary issue in frost resistant concrete design,which is one of the challenges that the QTP engineering managers should take into account.In this paper,we propose a more realistic method to calculate the number of concrete freeze-thaw cycles(NFTCs)on the QTP.The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7.Four machine learning methods,i.e.,the random forest(RF)model,generalized boosting method(GBM),generalized linear model(GLM),and generalized additive model(GAM),are used to fit the NFTCs.The root mean square error(RMSE)values of the RF,GBM,GLM,and GAM are 32.3,4.3,247.9,and 161.3,respectively.The R^(2)values of the RF,GBM,GLM,and GAM are 0.93,0.99,0.48,and 0.66,respectively.The GBM method performs the best compared to the other three methods,which was shown by the results of RMSE and R^(2)values.The quantitative results from the GBM method indicate that the lowest,medium,and highest NFTC values are distributed in the northern,central,and southern parts of the QTP,respectively.The annual NFTCs in the QTP region are mainly concentrated at 160 and above,and the average NFTCs is 200 across the QTP.Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze-thaw cycles Quantification machine learning algorithms Qinghai-Tibet Plateau CONCRETE
原文传递
Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms
10
作者 Junjie Zhao Diyuan Li +1 位作者 Jingtai Jiang Pingkuang Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期275-304,共30页
Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining envir... Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining environments under high in-situ stress.Thus,this study aims to develop an advanced model for predicting the UCS of rockmaterial in deepmining environments by combining three boosting-basedmachine learning methods with four optimization algorithms.For this purpose,the Lead-Zinc mine in Southwest China is considered as the case study.Rock density,P-wave velocity,and point load strength index are used as input variables,and UCS is regarded as the output.Subsequently,twelve hybrid predictive models are obtained.Root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R2),and the proportion of the mean absolute percentage error less than 20%(A-20)are selected as the evaluation metrics.Experimental results showed that the hybridmodel consisting of the extreme gradient boostingmethod and the artificial bee colony algorithm(XGBoost-ABC)achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset.The values of R2,A-20,RMSE,and MAE on the training dataset are 0.98,1.0,3.11 MPa,and 2.23MPa,respectively.The highest values of R2 and A-20(0.93 and 0.96),and the smallest RMSE and MAE values of 4.78 MPa and 3.76MPa,are observed on the testing dataset.The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines. 展开更多
关键词 Uniaxial compression strength strength prediction machine learning optimization algorithm
在线阅读 下载PDF
Adaptive Music Recommendation: Applying Machine Learning Algorithms Using Low Computing Device
11
作者 Tianhui Zhang Xianchen Liu +1 位作者 Zhen Guo Yuanhao Tian 《Journal of Software Engineering and Applications》 2024年第11期817-831,共15页
In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers f... In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers for large-scale training to produce recommendation results, which may result in the inability to achieve music recommendation in some areas due to substandard hardware conditions. This study evaluates the adaptability of four popular machine learning algorithms (K-means clustering, fuzzy C-means (FCM) clustering, hierarchical clustering, and self-organizing map (SOM)) on low-computing servers. Our comparative analysis highlights that while K-means and FCM are robust in high-performance settings, they underperform in low-power scenarios where SOM excels, delivering fast and reliable recommendations with minimal computational overhead. This research addresses a gap in the literature by providing a detailed comparative analysis of MRS algorithms, offering practical insights for implementing adaptive MRS in technologically diverse environments. We conclude with strategic recommendations for emerging streaming services in resource-constrained settings, emphasizing the need for scalable solutions that balance cost and performance. This study advocates an adaptive selection of recommendation algorithms to manage operational costs effectively and accommodate growth. 展开更多
关键词 Music Recommendation Media Arts and Sciences Artificial Intelligence machine learning algorithms Comparative Analysis
在线阅读 下载PDF
Analysing Effectiveness of Sentiments in Social Media Data Using Machine Learning Techniques
12
作者 Thambusamy Velmurugan Mohandas Archana Ajith Singh Nongmaithem 《Journal of Computer and Communications》 2025年第1期136-151,共16页
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ... Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral. 展开更多
关键词 Support Vector machine Random Forest algorithm Naive Bayes algorithm machine learning Techniques Decision Tree algorithm
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model
13
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement machine learning Teacher-student relationships Swarm intelligence algorithms Fruit fly optimization algorithm
在线阅读 下载PDF
Serum calcium-based interpretable machine learning model for predicting anastomotic leakage after rectal cancer resection:A multi-center study
14
作者 Bo-Yu Kang Yi-Huan Qiao +4 位作者 Jun Zhu Bao-Liang Hu Ze-Cheng Zhang Ji-Peng Li Yan-Jiang Pei 《World Journal of Gastroenterology》 2025年第19期86-99,共14页
BACKGROUND Despite the promising prospects of utilizing artificial intelligence and machine learning(ML)for comprehensive disease analysis,few models constructed have been applied in clinical practice due to their com... BACKGROUND Despite the promising prospects of utilizing artificial intelligence and machine learning(ML)for comprehensive disease analysis,few models constructed have been applied in clinical practice due to their complexity and the lack of reasonable explanations.In contrast to previous studies with small sample sizes and limited model interpretability,we developed a transparent eXtreme Gradient Boosting(XGBoost)-based model supported by multi-center data,using patients'basic information and clinical indicators to forecast the occurrence of anastomotic leakage(AL)after rectal cancer resection surgery.The model demonstrated robust predictive performance and identified clinically relevant thresholds,which may assist physicians in optimizing perioperative management.AIM To develop an interpretable ML model for accurately predicting the occurrence probability of AL after rectal cancer resection and define our clinical alert values for serum calcium ions.METHODS Patients who underwent anterior resection of the rectum for rectal carcinoma at the Department of Digestive Surgery,Xijing Hospital of Digestive Diseases,Air Force Medical University,and Shaanxi Provincial People's Hospital,were retrospectively collected from January 2011 to December 2021.Ten ML models were integrated to analyze the data and develop the predictive models.Receiver operating characteristic(ROC)curves,calibration curve,decision curve analysis,accuracy,sensitivity,specificity,positive predictive value,negative predictive value,and F1 score were used to evaluate model performance.We employed the SHapley Additive exPlanations(SHAP)algorithm to explain the feature importance of the optimal model.RESULTS A total of ten features were integrated to construct the predictive model and identify the optimal model.XGBoost was considered the best-performing model with an area under the ROC curve(AUC)of 0.984(95%confidence interval:0.972-0.996)in the test set(accuracy:0.925;sensitivity:0.92;specificity:0.927).Furthermore,the model achieved an AUC of 0.703 in external validation.The interpretable SHAP algorithm revealed that the serum calcium ion level was the crucial factor influencing the predictions of the model.CONCLUSION A superior predictive model,leveraging clinical data,has been crafted by employing the most effective XGBoost from a selection of ten algorithms.This model,by predicting the occurrence of AL in patients after rectal cancer resection,has identified the significant role of serum calcium ion levels,providing guidance for clinical practice.The integration of SHAP provides a clear interpretation of the model's predictions. 展开更多
关键词 machine learning Rectal cancer Anastomotic leakage SHapley Additive exPlanations algorithms
暂未订购
Rockburst Intensity Prediction based on Kernel Extreme Learning Machine(KELM)
15
作者 XIAO Yidong QI Shengwen +3 位作者 GUO Songfeng ZHANG Shishu WANG Zan GONG Fengqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期284-295,共12页
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ... As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications. 展开更多
关键词 rockburst intensity prediction kernel extreme learning machine genetic algorithm cross-entropy method
在线阅读 下载PDF
Navigating challenges and opportunities of machine learning in hydrogen catalysis and production processes: Beyond algorithm development
16
作者 Mohd Nur Ikhmal Salehmin Sieh Kiong Tiong +5 位作者 Hassan Mohamed Dallatu Abbas Umar Kai Ling Yu Hwai Chyuan Ong Saifuddin Nomanbhay Swee Su Lim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期223-252,共30页
With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a c... With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector. 展开更多
关键词 machine learning Computational modeling HER catalyst synthesis Hydrogen energy Hydrogen production processes algorithm development
在线阅读 下载PDF
Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia 被引量:19
17
作者 Ahmed Mohamed Youssef Hamid Reza Pourghasemi 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期639-655,共17页
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artifici... The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection. 展开更多
关键词 Landslide susceptibility machine learning algorithms Variables importance Saudi Arabia
在线阅读 下载PDF
Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms 被引量:8
18
作者 Pin Zhang Zhen-Yu Yin +2 位作者 Yin-Fu Jin Tommy HTChan Fu-Ping Gao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期441-452,共12页
Compression index Ccis an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge.This paper suggests a novel modelling approach using machine learning(ML)technique.T... Compression index Ccis an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge.This paper suggests a novel modelling approach using machine learning(ML)technique.The performance of five commonly used machine learning(ML)algorithms,i.e.back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),random forest(RF)and evolutionary polynomial regression(EPR)in predicting Cc is comprehensively investigated.A database with a total number of 311 datasets including three input variables,i.e.initial void ratio e0,liquid limit water content wL,plasticity index Ip,and one output variable Cc is first established.Genetic algorithm(GA)is used to optimize the hyper-parameters in five ML algorithms,and the average prediction error for the 10-fold cross-validation(CV)sets is set as thefitness function in the GA for enhancing the robustness of ML models.The results indicate that ML models outperform empirical prediction formulations with lower prediction error.RF yields the lowest error followed by BPNN,ELM,EPR and SVM.If the ranges of input variables in the database are large enough,BPNN and RF models are recommended to predict Cc.Furthermore,if the distribution of input variables is continuous,RF model is the best one.Otherwise,EPR model is recommended if the ranges of input variables are small.The predicted correlations between input and output variables using five ML models show great agreement with the physical explanation. 展开更多
关键词 COMPRESSIBILITY Clays machine learning Optimization Random forest Genetic algorithm
在线阅读 下载PDF
Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings 被引量:10
19
作者 Lukasz Wojtecki Sebastian Iwaszenko +2 位作者 Derek B.Apel Mirosawa Bukowska Janusz Makówka 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期703-713,共11页
The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as ... The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as the coal seam tendency to rockbursts, the thickness of the coal seam, and the stress level in the seam have to be considered, but also the entire coal seam-surrounding rock system has to be evaluated when trying to predict the rockbursts. However, in hard coal mines, there are stroke or stress-stroke rockbursts in which the fracture of a thick layer of sandstone plays an essential role in predicting rockbursts. The occurrence of rockbursts in coal mines is complex, and their prediction is even more difficult than in other mines. In recent years, the interest in machine learning algorithms for solving complex nonlinear problems has increased, which also applies to geosciences. This study attempts to use machine learning algorithms, i.e. neural network, decision tree, random forest, gradient boosting, and extreme gradient boosting(XGB), to assess the rockburst hazard of an active hard coal mine in the Upper Silesian Coal Basin. The rock mass bursting tendency index WTGthat describes the tendency of the seam-surrounding rock system to rockbursts and the anomaly of the vertical stress component were applied for this purpose. Especially, the decision tree and neural network models were proved to be effective in correctly distinguishing rockbursts from tremors, after which the excavation was not damaged. On average, these models correctly classified about 80% of the rockbursts in the testing datasets. 展开更多
关键词 Hard coal mining Rockburst hazard machine learning algorithms
在线阅读 下载PDF
Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process 被引量:6
20
作者 Hamid Reza Pourghasemi Nitheshnirmal Sadhasivam +1 位作者 Narges Kariminejad Adrian L.Collins 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2207-2219,共13页
This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linea... This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion. 展开更多
关键词 machine learning algorithm Gully erosion Random forest Controlling factors Variable importance
在线阅读 下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部