期刊文献+
共找到78,159篇文章
< 1 2 250 >
每页显示 20 50 100
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS的女贞子酒蒸前后血清药物化学对比分析
1
作者 刘昊霖 郑历史 +3 位作者 孙淑仃 赵迪 李焕茹 冯素香 《中华中医药学刊》 北大核心 2026年第1期175-186,I0027,共13页
目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提... 目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提液后血清中的移行成分进行对比分析。方法雄性Sprague-Dawley(SD)大鼠随机分为空白组、女贞子组(10.8 g·kg^(-1)·d^(-1))和酒女贞子组(10.8 g·kg^(-1)·d^(-1)),每组6只,给药组分别灌胃给予女贞子、酒女贞子水提液,空白组灌胃等体积纯净水,早晚各1次,连续5 d,末次给药1 h后腹主动脉取血,制备血清样品。采用Accucore^(TM) C_(18)(100 mm×2.1 mm,2.6μm)色谱柱,流动相为乙腈(A)-0.1%甲酸水(B),梯度洗脱(0~5 min,95%B→85%B;5~10 min,85%B→73%B;10~24 min,73%B→15%B),流速0.2 mL·min^(-1),进样量5μL,正、负离子模式扫描,扫描范围m/z 120~1200。采用Compound Discoverer 3.3软件,根据质谱数据和相关文献对女贞子、酒女贞子入血原型成分和代谢产物进行分析鉴定;采用多元统计分析方法对比女贞子、酒女贞子含药血清间的差异性成分。结果在给予女贞子水提液大鼠血清中共鉴定得到64个入血成分,包括40个原型成分和24个代谢产物;在给予酒女贞子水提液大鼠血清中共鉴定得到57个入血成分,包括35个原型成分和22个代谢产物。原型成分主要包括苯乙醇苷类、环烯醚萜类、三萜类、黄酮类等,代谢途径主要包括羟基化、甲基化、葡萄糖醛酸化等。根据变量重要性投影(variable importance in projection,VIP)值>1,t检验(Student's t test)结果P<0.05筛选出特女贞苷、女贞苷酸等12个差异性入血成分,其中7个原型成分、5个代谢产物。结论女贞子酒蒸后血清移行成分发生明显改变,可为阐明女贞子、酒女贞子药效物质基础提供理论依据。 展开更多
关键词 女贞子 炮制 血清药物化学 UPLC-Orbitrap fusion Lumos Tribrid-MS 多元统计分析
原文传递
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
2
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes
3
作者 Ziyang Wang Lian Duan +2 位作者 Lei Kuang Haibo Zhou Ji’an Duan 《Computers, Materials & Continua》 2025年第8期2587-2604,共18页
The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise co... The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging. 展开更多
关键词 Coaxial laser diodes laser welding physics-informed Gaussian process regression Bayesian optimization
在线阅读 下载PDF
LatentPINNs:Generative physics-informed neural networks via a latent representation learning
4
作者 Mohammad H.Taufik Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期155-165,共11页
Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the... Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training. 展开更多
关键词 physics-informed neural networks PDE solvers Latent representation learning
在线阅读 下载PDF
A study of mechanism-data hybrid-driven method for multibody system via physics-informed neural network
5
作者 Ningning Song Chuanda Wang +1 位作者 Haijun Peng Jian Zhao 《Acta Mechanica Sinica》 2025年第3期129-153,共25页
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven... Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4). 展开更多
关键词 Mechanism-data hybrid-driven method Differential-algebra equation Multibody system physics-informed neural network
原文传递
A lightweight two-stage physics-informed neural network for SOH estimation of lithium-ion batteries with different chemistries
6
作者 Chunsong Lin Longxing Wu +4 位作者 Xianguo Tuo Chunhui Liu Wei Zhang Zebo Huang Guiyu Zhang 《Journal of Energy Chemistry》 2025年第6期261-279,I0007,共20页
Accurately estimating the battery state of health(SOH)is essential for ensuring the safe and reliable operation of battery systems of electric vehicles.However,due to the complex and variable operating conditions enco... Accurately estimating the battery state of health(SOH)is essential for ensuring the safe and reliable operation of battery systems of electric vehicles.However,due to the complex and variable operating conditions encountered in practical applications,achieving precise and physics-informed SOH estimation remains challenging.To address these problems,this paper develops a lightweight two-stage physicsinformed neural network(TSPINN)method for SOH estimation of lithium-ion batteries with different chemistries.Specifically,this paper utilizes firstly relaxation voltage data obtained after a full charge to determine the aging-related parameters of physical equivalent circuit model(ECM).Additionally,incremental capacity(IC)feature is extracted by analyzing peak values of the IC curve during the charging phase,which thereby constitutes the first stage of the proposed TSPINN,termed as physics-informed data augmentation for SOH estimation.Additionally,the physical information can be further embedded by incorporating feature knowledge related to mechanisms into the loss function,and ultimately,the second stage of the proposed TSPINN is developed,which is named the physics-informed loss function.The effectiveness of the TSPINN method was confirmed through the experimental data for LiNi_(0.86)Co_(0.11)Al_(0.03)O_(2)(NCA)and LiNi_(0.83)Co_(0.11)Mn_(0.07)O_(2)(NCM)battery materials under different temperature conditions.The final experimental results indicate that the TSPINN method achieved SOH estimation with a mean absolute error(MAE)of 0.675%,showing improvements of approximately 29.3%,60.3%,and 8.1% compared to methods using only ECM,IC,and integrated features,respectively.The results validate the effectiveness and adaptability of TSPINN,establishing it as a reliable solution for advanced battery management systems. 展开更多
关键词 Lithium-ion battery Voltage relaxation physics-information neural network Stateof health
在线阅读 下载PDF
Data-driven fusion and fission solutions in the Hirota–Satsuma–Ito equation via the physics-informed neural networks method
7
作者 Jianlong Sun Kaijie Xing Hongli An 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第11期15-23,共9页
Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via... Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the(2+1)-dimensional Hirota-Satsuma-Ito equation via the physics-informed neural networks(PINN)method.By choosing suitable physically constrained initial boundary conditions,the data-driven fusion and fission solutions are obtained for the first time.Dynamical behaviors and error analysis of these solutions are investigated via illustratively numerical figures,which show that good results are achieved.It is pointed out that the PINN method adopted here can be effectively used to construct the data-driven fusion and fission solutions for other nonlinear integrable equations.Based on the powerful predictive capability of the PINN method and wide applications of fusion and fission in many physical areas,it is hoped that the data-driven solutions obtained here will be helpful for experts to predict or explain related physical phenomena. 展开更多
关键词 Hirota-Satsuma-Ito equation physics-informed neural networks method fusion and fission solutions
原文传递
MBID:A Scalable Multi-Tier Blockchain Architecture with Physics-Informed Neural Networks for Intrusion Detection in Large-Scale IoT Networks
8
作者 Saeed Ullah Junsheng Wu +3 位作者 Mian Muhammad Kamal Heba G.Mohamed Muhammad Sheraz Teong Chee Chuah 《Computer Modeling in Engineering & Sciences》 2025年第8期2647-2681,共35页
The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resour... The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resource limitations and diverse system architectures.The current conventional intrusion detection systems(IDS)face scalability problems and trust-related issues,but blockchain-based solutions face limitations because of their low transaction throughput(Bitcoin:7 TPS(Transactions Per Second),Ethereum:15-30 TPS)and high latency.The research introduces MBID(Multi-Tier Blockchain Intrusion Detection)as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection,which solves the problems in huge IoT networks.The MBID system uses a four-tier architecture that includes device,edge,fog,and cloud layers with blockchain implementations and Physics-Informed Neural Networks(PINNs)for edge-based anomaly detection and a dual consensus mechanism that uses Honesty-based Distributed Proof-of-Authority(HDPoA)and Delegated Proof of Stake(DPoS).The system achieves scalability and efficiency through the combination of dynamic sharding and Interplanetary File System(IPFS)integration.Experimental evaluations demonstrate exceptional performance,achieving a detection accuracy of 99.84%,an ultra-low false positive rate of 0.01% with a False Negative Rate of 0.15%,and a near-instantaneous edge detection latency of 0.40 ms.The system demonstrated an aggregate throughput of 214.57 TPS in a 3-shard configuration,providing a clear,evidence-based path for horizontally scaling to support overmillions of devices with exceeding throughput.The proposed architecture represents a significant advancement in blockchain-based security for IoT networks,effectively balancing the trade-offs between scalability,security,and decentralization. 展开更多
关键词 Internet of things blockchain intrusion detection physics-informed neural networks scalability security
在线阅读 下载PDF
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
9
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(PINN) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
Physics-informed neural network for simulation of electromagnetic and temperature fields in electroslag remelting process
10
作者 Xiao-qing Jiang Wen-yue Hu +2 位作者 Xiao-na Liu Hong-ru Li Fu-bin Liu 《Journal of Iron and Steel Research International》 2025年第11期3826-3837,共12页
In the electroslag remelting(ESR)process,it mainly relies on thermal experiments or analysis via mechanistic models to realize the physical fields simulation of the electromagnetic field and temperature field coupled ... In the electroslag remelting(ESR)process,it mainly relies on thermal experiments or analysis via mechanistic models to realize the physical fields simulation of the electromagnetic field and temperature field coupled transfer,which has the limitations of high cost,a large amount of calculating data and high computing power requirements.A novel network based on physics-informed neural network(PINN)was designed to realize the fast and high-fidelity prediction of the distribution of electromagnetic field and temperature field in ESR process.The physical laws were combined with the deep learning network through PINN,and physical constraints were embedded to achieve effective solution of partial differential equations(PDEs).PINN was used to minimize the loss function consisting of data error,physical information error and boundary condition error.The physical laws and boundary condition constraints in the ESR process were considered to maintain high PDE solution accuracy under different spatial and temporal resolutions.Automatic differentiation(Autodiff)technique and gradient descent algorithm were used to optimize the network parameters.The experimental results show that compared with the mechanistic models,PINN can effectively replace thermal experiments to realize the physical field simulation of ESR process with only a few experimental data,which can avoid the disadvantages of pure data-driven network simulation that requires a large amount of training data.Moreover,the solution of PINN has good physical interpretability and reliability of simulation results.For simulating electromagnetic field and temperature field distribution,the training time of the network is only 140 and 203 s,and the regression indicators of root mean square error can reach 12.65 and 13.76,respectively. 展开更多
关键词 physics-informed neural network Electroslag remelting process Electromagnetic field Temperature field SIMULATION
原文传递
Physics-informed meta neural representation for high-fidelity,aberration-corrected,sparse-view Fourier ptychographic tomography
11
作者 Minglu Sun Fenghe Zhong +5 位作者 Shiqi Mao Ying Liu Zihao Zhang Dongyu Li Binbing Liu Peng Fei 《Advanced Photonics Nexus》 2025年第6期165-177,共13页
Label-free 3D tomography has attracted growing attention in biological imaging due to its inherent resistance to phototoxicity and concise system configuration.Among existing techniques,Fourier ptychographic tomograph... Label-free 3D tomography has attracted growing attention in biological imaging due to its inherent resistance to phototoxicity and concise system configuration.Among existing techniques,Fourier ptychographic tomography(FPT)stands out for high-resolution refractive index(RI)reconstruction from noninterferometric measurements,avoiding coherent noise and phase instability-key limitations of optical diffraction tomography.However,conventional FPT suffers from significant artifacts and high computational demands,especially for multiscattering samples and long-term observation.Here,we introduce physicsinformed aberration-corrected meta neural representation(PAMR),an advanced self-supervised framework that integrates neural representation with physics prior,meta-learning optimization,and adaptive aberration correction.Simulations and experiments show that PAMR produces high-fidelity 3D reconstructions with reduced artifacts and strong optical section ability,achieving 137 and 550 nm resolution for lateral and axial,respectively.Moreover,PAMR exhibits superior sparse-view robustness,sustaining high-quality with 75%view reduction.Through the meta-learning strategy,the reconstruction speed of dynamic volumes could be increased by 10 times.Applications include 3D RI imaging of multiscattering C.elegans and long-term 3D observation of HeLa cells,showing detailed organelle structures and interactions.As a generalizable approach combining computational efficiency with physical accuracy,PAMR provides an advanced algorithm for label-free 3D microscopy,with broad applicability across biomedical research. 展开更多
关键词 deep learning physics-informed neural representation computational imaging 3D Fourier ptychography
在线阅读 下载PDF
A layer-specific constraint-based enriched physics-informed neural network for solving two-phase flow problems in heterogeneous porous media
12
作者 Jing-Qi Lin Xia Yan +4 位作者 Er-Zhen Wang Qi Zhang Kai Zhang Pi-Yang Liu Li-Ming Zhang 《Petroleum Science》 2025年第11期4714-4735,共22页
In this study,we propose a constraint learning strategy based on interpretability analysis to improve the convergence and accuracy of the enriched physics-informed neural network(EPINN),which is applied to simulate tw... In this study,we propose a constraint learning strategy based on interpretability analysis to improve the convergence and accuracy of the enriched physics-informed neural network(EPINN),which is applied to simulate two-phase flow in heterogeneous porous media.Specifically,we first analyze the layerwise outputs of EPINN,and identify the distinct functions across layers,including dimensionality adjustment,pointwise construction of non-equilibrium potential,extraction of high-level features,and the establishment of long-range dependencies.Then,inspired by these distinct modules,we propose a novel constraint learning strategy based on regularization approaches,which improves neural network(NN)learning through layer-specific differentiated updates to enhance cross-timestep generalization.Since different neu ral network layers exhibit varying sensitivities to global generalization and local regression,we decrease the update frequency of layers more sensitive to local learning under this constraint learning strategy.In other words,the entire neural network is encouraged to extract more generalized features.The superior performance of the proposed learning strategy is validated through evaluations on numerical examples with varying computational complexities.Post hoc analysis reveals that gradie nt propagation exhibits more pronounced staged characte ristics,and the partial differential equation(PDE)residuals are more uniformly distributed under the constraint guidance.Interpretability analysis of the adaptive constraint process suggests that maintaining a stable information compression mode facilitates progressive convergence acceleration. 展开更多
关键词 physics-informed learning Explainable artificial intelligence Constraint learning Two-phase flow Heterogeneous porous media
原文传递
VW-PINNs:A volume weighting method for PDE residuals in physics-informed neural networks
13
作者 Jiahao Song Wenbo Cao +1 位作者 Fei Liao Weiwei Zhang 《Acta Mechanica Sinica》 2025年第3期65-79,共15页
Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calcu... Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calculating the PDE loss at a set of collocation points,providing advantages such as meshfree and more convenient adaptive sampling.However,when solving PDEs using nonuniform collocation points,PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure.In this work,we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points.To address the issue,we define volume weighting residual and propose volume weighting physics-informed neural networks(VW-PINNs).Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain,we embed explicitly the distribution characteristics of collocation points in the loss evaluation.The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed.Considering the meshfree characteristics of VW-PINNs,we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points.We validate the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions,where conventional PINNs fail.By solving the Burgers’equation,we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by three times,and can reduce the relative L 2 error of conventional PINNs in solving the inverse problem by more than one order of magnitude. 展开更多
关键词 physics-informed neural networks Partial differential equations Nonuniform sampling Residual balancing Deep learning
原文传递
Physics-Informed Graph Learning for Shape Prediction in Robot Manipulate of Deformable Linear Objects
14
作者 Meixuan Wang Junliang Wang +2 位作者 Jie Zhang Xinting Liao Guojin Li 《Chinese Journal of Mechanical Engineering》 2025年第6期154-165,共12页
Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent fle... Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent flexibility of DLO and their complex deformation behaviors,such as bending and torsion,it is challenging to predict their dynamic characteristics accurately.Although the traditional physical modeling method can simulate the complex deformation behavior of DLO,the calculation cost is high and it is difficult to meet the demand of real-time prediction.In addition,the scarcity of data resources also limits the prediction accuracy of existing models.To solve these problems,a method of fiber shape prediction based on a physical information graph neural network(PIGNN)is proposed in this paper.This method cleverly combines the powerful expressive power of graph neural networks with the strict constraints of physical laws.Specifically,we learn the initial deformation model of the fiber through graph neural networks(GNN)to provide a good initial estimate for the model,which helps alleviate the problem of data resource scarcity.During the training process,we incorporate the physical prior knowledge of the dynamic deformation of the fiber optics into the loss function as a constraint,which is then fed back to the network model.This ensures that the shape of the fiber optics gradually approaches the true target shape,effectively solving the complex nonlinear behavior prediction problem of deformable linear objects.Experimental results demonstrate that,compared to traditional methods,the proposed method significantly reduces execution time and prediction error when handling the complex deformations of deformable fibers.This showcases its potential application value and superiority in fiber manipulation. 展开更多
关键词 Deformable linear objects Fiber physics-informed graph neural network(PIGNN) Shape prediction
在线阅读 下载PDF
Physics-informed neural network optimized by particle swarm algorithm for accurate prediction of blast-induced peak particle velocity
15
作者 Lang Qiu Yujie Zhu +3 位作者 Chen Xu Gaofeng Ren Yingguo Hu Xiaoli Liu 《Intelligent Geoengineering》 2025年第3期126-140,共15页
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred... Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications. 展开更多
关键词 Peak particle velocity Blast-induced vibration Particle Swarm Optimization algorithm physics-informed neural network Prediction system
在线阅读 下载PDF
Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initialboundary value problems
16
作者 K.A.LUONG M.A.WAHAB J.H.LEE 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期763-780,共18页
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static... Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost. 展开更多
关键词 decoupled physics-informed neural network(dPINN) decoupled formulation Galerkin method initial-boundary value problem(IBVP) machine learning
在线阅读 下载PDF
Wake field prediction of a wind farm based on a physics-informed neural network with different spatiotemporal prediction performance improvement strategies
17
作者 Junyong Song Lei Wang +1 位作者 Zhiqiang Xin Hao Wang 《Theoretical & Applied Mechanics Letters》 2025年第2期141-153,共13页
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo... Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms. 展开更多
关键词 Dynamic wake prediction LiDAR measurements physics-informed neural network Accuracy improvement strategy Step-by-step time saving strategy
在线阅读 下载PDF
A symmetric difference data enhancement physics-informed neural network for the solving of discrete nonlinear lattice equations
18
作者 Jian-Chen Zhou Xiao-Yong Wen Ming-Juan Guo 《Communications in Theoretical Physics》 2025年第6期21-29,共9页
In this paper,we propose a symmetric difference data enhancement physics-informed neural network(SDE-PINN)to study soliton solutions for discrete nonlinear lattice equations(NLEs).By considering known and unknown symm... In this paper,we propose a symmetric difference data enhancement physics-informed neural network(SDE-PINN)to study soliton solutions for discrete nonlinear lattice equations(NLEs).By considering known and unknown symmetric points,numerical simulations are conducted to one-soliton and two-soliton solutions of a discrete KdV equation,as well as a one-soliton solution of a discrete Toda lattice equation.Compared with the existing discrete deep learning approach,the numerical results reveal that within the specified spatiotemporal domain,the prediction accuracy by SDE-PINN is excellent regardless of the interior or extrapolation prediction,with a significant reduction in training time.The proposed data enhancement technique and symmetric structure development provides a new perspective for the deep learning approach to solve discrete NLEs.The newly proposed SDE-PINN can also be applied to solve continuous nonlinear equations and other discrete NLEs numerically. 展开更多
关键词 symmetric difference data enhancement physics-informed neural network data enhancement symmetric point soliton solutions discrete nonlinear lattice equations
原文传递
Physics-informed graph neural network for predicting fluid flow in porous media
19
作者 Hai-Yang Chen Liang Xue +6 位作者 Li Liu Gao-Feng Zou Jiang-Xia Han Yu-Bin Dong Meng-Ze Cong Yue-Tian Liu Seyed Mojtaba Hosseini-Nasab 《Petroleum Science》 2025年第10期4240-4253,共14页
With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot res... With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot research direction,with physics-informed neural networks(PINNs) being the most popular hybrid model.PINNs have gained widespread attention in subsurface fluid flow simulations due to their low computational resource requirements,fast training speeds,strong generalization capabilities,and broad applicability.Despite success in homogeneous settings,standard PINNs face challenges in accurately calculating flux between irregular Eulerian cells with disparate properties and capturing global field influences on local cells.This limits their suitability for heterogeneous reservoirs and the irregular Eulerian grids frequently used in reservoir.To address these challenges,this study proposes a physics-informed graph neural network(PIGNN) model.The PIGNN model treats the entire field as a whole,integrating information from neighboring grids and physical laws into the solution for the target grid,thereby improving the accuracy of solving partial differential equations in heterogeneous and Eulerian irregular grids.The optimized model was applied to pressure field prediction in a spatially heterogeneous reservoir,achieving an average L_(2) error and R_(2) score of 6.710×10^(-4)and 0.998,respectively,which confirms the effectiveness of model.Compared to the conventional PINN model,the average L_(2) error was reduced by 76.93%,the average R_(2) score increased by 3.56%.Moreover,evaluating robustness,training the PIGNN model using only 54% and 76% of the original data yielded average relative L_(2) error reductions of 58.63% and 56.22%,respectively,compared to the PINN model.These results confirm the superior performance of this approach compared to PINN. 展开更多
关键词 Graph neural network(GNN) Deep-learning Physical-informed neural network(PINN) physics-informed graph neural network(PIGNN) Flow in porous media Perpendicular bisectional grid(PEBI) Unstructured mesh
原文传递
Effect of Addition of Er-TiB_(2)Dual-Phase Nanoparticles on Strength-Ductility of Al-Mn-Mg-Sc-Zr Alloy Prepared by Laser Powder Bed Fusion
20
作者 Li Suli Zhang Yanze +5 位作者 Yang Mengjia Zhang Longbo Xie Qidong Yang Laixia MaoFeng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期9-17,共9页
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w... A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively. 展开更多
关键词 Al-Mn-Mg-Sc-Zr alloy laser powder bed fusion nano-reinforcing phase synergistic enhancement
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部