In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with d...In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with digital information. First, this paper exam- ines the existing body of work on tangible user interfaces and discusses their application domains, especially information visualiza- tion. Then it provides a definition of intuitive use and reviews formerly separated ideas on physicality. As interaction has an impact on the overall product experience, we also discuss whether intuitive use influences the users' aesthetic judgements of such products.展开更多
To maintain soil quality under long-term saline water irrigation,the influence of manure on soil physical properties was examined.Long-term saline irrigation has been conducted from 2015 to 2024 at the Nanpi Eco-Agric...To maintain soil quality under long-term saline water irrigation,the influence of manure on soil physical properties was examined.Long-term saline irrigation has been conducted from 2015 to 2024 at the Nanpi Eco-Agricultural Experimental Station of Chinese Academy Sciences in the Low Plain of the North China Plain,comprising four irrigation treatments:irrigation once at the jointing stage for winter wheat with irrigation water containing salt at fresh water,3,4 and 5 g·L^(–1),and maize irrigation at sowing using fresh water.Manure application was conducted under all irrigation treatments,with treatments without manure application used as controls.The results showed that under long-term irrigation with saline water,the application of manure increased the soil organic matter content,exchangeable potassium,available phosphorus,and total nitrogen content in the 0–20 cm soil layer by 46.8%,117.0%,75.7%,and 45.5%,respectively,compared to treatments without manure application.The application of manure reduced soil bulk density.It also increased the proportion of water-stable aggregates and the abundance of bacteria,fungi,and actinomycetes in the tillage soil layer compared to the controls.Because of the salt contained in the manure,the application of manure had dual effects on soil salt content.During the winter wheat season,manure application increased soil salt content.The salt content was significantly reduced during the summer maize season,owing to the strong salt-leaching effects under manure application,resulting in a smaller difference in salt content between the manure and non-manure treatments.During the summer rainfall season,improvements in soil structure under manure application increased the soil desalination rate for the 1 m top soil layer.The desalination rate for 0–40 cm and 40–100 cm was averagely by 39.1%and 18.9%higher,respectively,under manure application as compared with that under the nomanure treatments.The yield of winter wheat under manure application was 0.12%lower than that of the control,owing to the higher salt content during the winter wheat season.In contrast,the yield of summer maize improved by 3.9%under manure application,owing to the increased soil nutrient content and effective salt leaching.The results of this study indicated that manure application helped maintain the soil physical structure,which is important for the long-term use of saline water.In practice,using manure with a low salt content is suggested to reduce the adverse effects of saline water irrigation on soil properties and achieve sustainable saline water use.展开更多
Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as...Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.展开更多
Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for it...Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity,particularly in aging brains.However,the underlying mechanisms of exercise in cognitive aging remain largely unclear.Adiponectin,a cell-secreted protein hormone,has recently been found to regulate synaptic plasticity and mediate the antidepressant effects of physical exercise.Studies on the neuroprotective effects of adiponectin have revealed potential innovative treatments for Alzheimer's disease.Here,we reviewed the functions of adiponectin and its receptor in the brains of human and animal models of cognitive impairment.We summarized the role of adiponectin in Alzheimer's disease,focusing on its impact on energy metabolism,insulin resistance,and inflammation.We also discuss how exercise increases adiponectin secretion and its potential benefits for learning and memory.Finally,we highlight the latest research on chemical compounds that mimic exerciseenhanced secretion of adiponectin and its receptor in Alzheimer's disease.展开更多
1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic inf...1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic information sciences, remote sensing and cartography. Manuscripts come from different parts of the world.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for s...In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.展开更多
Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased ph...Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased physical activity(PA)are important contributors to the rising prevalence of DM.This article reviews the research progress on the pathogenesis of DM,the effects of SB and PA on the risk of DM,aiming to explore the influence of different PA intensities,amounts,frequencies,durations and types on the incidence of DM.Research has shown that blood glucose levels tend to increase with the prolongation of SB.Within a certain range,PA intensity and PA amount are negatively correlated with the risk of DM;Performing PA for more than 3 days per week maintains normal glucose tolerance and lower blood pressure;Engaging in 150–300 min of moderate intensity exercise or 75–150 min of high-intensity exercise per week reduces the risk of DM;PA during leisure time reduces the risk of DM,while PA during work increases the risk of DM;Both aerobic training and resistance training reduce the risk of DM,and the combination of the two training methods produces better benefits;Various types of exercises,such as cycling,soccer,aerobics,yoga,tai chi,all reduce the risk of DM.In summary,prolonged SB increases the risk of DM,while appropriate PA reduces the risk of DM.As the intensity,amount,and frequency of PA increase,the effect of reducing DM risk becomes more significant.Different exercise methods have different effects on reducing DM risk.展开更多
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit...The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.展开更多
A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during ...A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.展开更多
OBJECTIVE To investigate possible associations between physical function assessment scales,such as Short Physical Performance Battery(SPPB)and Berg Balance Scale(BBS),with all-cause mortality in acute decompensated he...OBJECTIVE To investigate possible associations between physical function assessment scales,such as Short Physical Performance Battery(SPPB)and Berg Balance Scale(BBS),with all-cause mortality in acute decompensated heart failure(ADHF)patients.METHODS A total of 108 ADHF patients were analyzed from October 2020 to October 2022,and followed up to May 2023.The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis,while for SPPB and BBS,univariate Cox regression analysis was followed by receiver operating characteristic curves,in which the area under the curve represented their predictive accuracy for all-cause mortality.Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores.Optimal cutoff value for BBS was then identified using restricted cubic spline plots,and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test.The clinical utility of BBS was measured using decision curve analysis.RESULTS For baseline characteristics,age,female,blood urea nitrogen,as well as statins,angiotensin-converting enzyme inhibitors,angiotensin II receptor blockers,or angiotensin receptor-neprilysin inhibitors,were predictive for all-cause mortality for ADHF patients.With respect to SPPB and BBS,higher scores were associated with lower all-cause mortality rates for both assessments;similar area under the curves were measured for both(0.774 for SPPB and 0.776 for BBS).Furthermore,BBS≤36.5 was associated with significantly higher mortality,which was still applicable even adjusting for confounding factors;BBS was also found to have great clinical utility under decision curve analysis.CONCLUSIONS BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients,as well as prognosticate on all-cause mortality.Moreover,prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.展开更多
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone(6PPDQ) and its parent 6PPD are ubiquitous in the environment and may induce multi-endpoint toxicity. Electronic waste(e-waste) dismantling is an under-rec...N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone(6PPDQ) and its parent 6PPD are ubiquitous in the environment and may induce multi-endpoint toxicity. Electronic waste(e-waste) dismantling is an under-recognized source of 6PPD and 6PPDQ emissions, and there is a lack of epidemiological investigations into their presence and health effects in local populations. This study aimed to determine the urinary concentrations of 6PPD and6PPDQ in children aged 2–7 years from e-waste dismantling areas and evaluate their potential risk to physical growth. We found that children from the e-waste area had significantly elevated urinary concentrations of 6PPD and 6PPDQ(median: 0.073 and 2.34 ng/mL) compared to those in the reference area(0.020 and 0.24 ng/mL, respectively). The estimated urinary excretions of 6PPDQ in the e-waste exposure group were considerably higher than that in the reference group(p < 0.001). Furthermore, a borderline significant association of co-exposure to high levels of 6PPD and 6PPDQ with lower BMI z-score(OR = 1.99, 95% Cl: 1.04,3.82) was observed in the crude model and the model adjusted for age and gender. In conclusion, our study first reported the urinary 6PPD and 6PPDQ concentrations in children from e-waste dismantling areas. The result indicated that e-waste recycling activities contribute to significantly elevated body burdens of 6PPD and 6PPDQ in children, which may be a potential risk factor for physical growth. Further epidemiological and toxicological studies are needed to investigate the exposure and health risks, especially in vulnerable populations.展开更多
This article is based on a recent bibliometric analysis of research progress on liver aging.The liver is notable for its extraordinary ability to rejuvenate,thereby safeguarding and maintaining the organism’s integri...This article is based on a recent bibliometric analysis of research progress on liver aging.The liver is notable for its extraordinary ability to rejuvenate,thereby safeguarding and maintaining the organism’s integrity.With advancing age,there is a noteworthy reduction in both the liver’s size and blood circulation.Furthermore,the wide range of physiological alterations driven on by aging may foster the development of illnesses.Previous studies indicate that liver aging is linked to impaired lipid metabolism and abnormal gene expression associated with chronic inflammation.Factors such as mitochondrial dysfunction and telomere shortening accumulate,which may result in increased hepatic steatosis,which impacts liver regeneration,metabolism,and other functions.Knowing the structural and functional changes could help elderly adults delay liver aging.Increasing public awareness of anti-aging interventions is essential.Besides the use of dietary supplements,alterations in lifestyle,including changes in dietary habits and physical exercise routines,are the most efficacious means to decelerate the aging process of the liver.This article highlights recent advances in the mechanism research of liver aging and summarizes the promising intervention options to delay liver aging for preventing related diseases.展开更多
Here we compare the efficacy of anti-obesity drugs alone or combined with exercise training on body weight and exercise capacity of obese patients.Randomized clinical trials that assessed the impact of any anti-obesit...Here we compare the efficacy of anti-obesity drugs alone or combined with exercise training on body weight and exercise capacity of obese patients.Randomized clinical trials that assessed the impact of any anti-obesity drug alone or combined with exercise training on body weight,body fat,fat-free mass and cardiorespiratory fitness in obese patients were retrieved from Pubmed and EMBASE up to May 2024.Risk of bias assessment was performed with RoB 2.0,and the GRADE approach assessed the certainty of evidence(CoE)of each main outcome.We included four publications summing up 202 patients.Two publications used orlistat as an anti-obesity drug treatment,while the other two adopted GLP-1 receptor agonist(liraglutide or tirzepatide)as a pharmacotherapy for weight management.Orlistat combined with exercise was superior to change body weight(mean difference(MD):−2.27 kg;95%CI:−2.86 to−1.69;CoE:very low),fat mass(MD:−2.89;95%CI:−3.87 to−1.91;CoE:very low),fat-free mass(MD:0.56;95%CI:0.40–0.72;CoE:very low),and VO_(2)Peak(MD:2.64;95%CI:2.52–2.76;CoE:very low).GLP-1 receptor agonist drugs combined with exercise had a great effect on body weight(MD:−3.96 kg;95%CI:−5.07 to−2.85;CoE:low),fat mass(MD:−1.76;95%CI:−2.24 to−1.27;CoE:low),fat-free mass(MD:0.50;95%CI:−0.98 to 1.98;CoE:very low)and VO_(2)Peak(MD:2.47;95%CI:1.31–3.63;CoE:very low).The results reported here suggest that exercise training remains an important approach in weight management when combined with pharmacological treatment.展开更多
In the context of convection-heating-based in situ oil shale retorting,fractures serve as primary pathways for fluid migration and product extraction.This study investigates the permeability and microstructural evolut...In the context of convection-heating-based in situ oil shale retorting,fractures serve as primary pathways for fluid migration and product extraction.This study investigates the permeability and microstructural evolution of oil shale during water vapor injection in single-fracture and no-fracture scenarios.Three types of oil shale are investigated:intact oil shale,oil shale with a single straight crack,and oil shale with a single hydraulic crack.With increasing water vapor temperature,the permeabilities of the intact oil shale and oil shale with a fractured crack exhibit a trend of initial increase,followed by a decrease,and then a subsequent increase.However,the permeability of oil shale with a single straight crack consistently increases and exceeds that of oil shale with a fractured crack.The temperaturedependent permeability changes in fractured oil shale-a slight decrease in fracture cracks and a gradual increase in straight cracks-mainly occur in the range of 300℃-350℃.The permeability of oil shale with a straight crack is approximately three times that of oil shale with a fractured crack.This is attributed to the retention of viscous asphaltene and the frictional resistance caused by the rough fracture structure.For the oil shale with a single crack,the crack permeability has a dominant influence on the overall permeability of the rock.The contribution of the permeability of the straight crack exceeds 94.6%,while that of the permeability of the fractured crack is greater than 86.1%.The disparity in the contribution of these two crack structures is evident at 350℃-550℃.展开更多
BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding s...BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding structured,multimodal rehabilitation programs targeting biomechanical deficits in IFI.This case report evaluates the efficacy of a multimodal rehabilitation program addressing a critical gap in conservative management strategies.CASE SUMMARY The patient underwent comprehensive physical and clinical examination,including hip X-ray and magnetic resonance imaging investigations.The patient completed the Musculoskeletal Health Questionnaire(MSK-HQ)and numerical pain rating scale(NPRS).The patient underwent a two-month tailored structured physical therapy intervention and repeated the same assessment afterwards.The patient's substantial reduction in pain,reflected by a significant decrease in the patient’s NPRS score from 9 to 3 points,signifies a positive clinical response.This outcome,coupled with the significant improvement in the patient's health-related quality of life according to the MSK-HQ score,which increased from 12 to 48 points,underscores the success of our research.CONCLUSION The study highlights the importance of a comprehensive approach to diagnosing and managing IFI,combining clinical assessment with imaging and implementing a multimodal rehabilitation program for optimal outcomes.展开更多
The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the ...The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the factors controlling their development remain subjects of debate.This paper,based on seismic profile analysis,employs physical simulation experiments to establish a'wedge'type subduction model.The study explores the influence of the initial wedge angle,horizontal sand layer thickness,and the presence or absence of a decollement layer on the structural styles of the thrust wedge.Experimental results indicate that as the initial wedge angle decreases from 11°to 8°,the lateral growth of the thrust wedge increases,whereas vertical growth diminishes.When the horizontal sand layer thickness is reduced from 4.5 cm to 3.0 cm,the spacing between the frontal thrusts decreases and the number of thrust faults increases.Both lateral and vertical growth are relatively reduced,resulting in a smaller thrust wedge.When a decollement layer is present,the structural style exhibits layered deformation.The decollement layer constrains the development of back thrusts and promotes the localized formation of frontal thrusts.In conclusion,the imbricate thrust faults at the frontal edge of the Makran accretionary wedge are primarily controlled by the characteristics of the wedge itself and the presence of the decollement layer.展开更多
It explores the integration of rehabilitation and palliative care in cancer management,advocating for a holistic approach that addresses the diverse needs of patients throughout their treatment journey.Traditional can...It explores the integration of rehabilitation and palliative care in cancer management,advocating for a holistic approach that addresses the diverse needs of patients throughout their treatment journey.Traditional cancer care often prioritizes curative interventions at the expense of overall well-being,leading to a fragmented experience for patients.By combining rehabilitation-focused on restoring function and improving physical health-with palliative care-emphasizing symptom management and quality of life-healthcare providers can create a comprehensive support system.The essay highlights the importance of interdisciplinary collaboration among healthcare professionals,as well as the need for education and training to implement this integrated model effectively.Additionally,it addresses potential barriers such as funding limitations and institutional resistance.Ultimately,the integration of these two disciplines represents a critical evolution in cancer care,enhancing patient outcomes and ensuring that individuals receive compassionate,patient-centered support throughout their journey.展开更多
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C...Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.展开更多
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t...Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.展开更多
文摘In the last two decades, tangible user interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. TUIs show a potential to enhance the way in which people interact with digital information. First, this paper exam- ines the existing body of work on tangible user interfaces and discusses their application domains, especially information visualiza- tion. Then it provides a definition of intuitive use and reviews formerly separated ideas on physicality. As interaction has an impact on the overall product experience, we also discuss whether intuitive use influences the users' aesthetic judgements of such products.
基金supported by National Key R&D Program of China (2022YFD1900104)。
文摘To maintain soil quality under long-term saline water irrigation,the influence of manure on soil physical properties was examined.Long-term saline irrigation has been conducted from 2015 to 2024 at the Nanpi Eco-Agricultural Experimental Station of Chinese Academy Sciences in the Low Plain of the North China Plain,comprising four irrigation treatments:irrigation once at the jointing stage for winter wheat with irrigation water containing salt at fresh water,3,4 and 5 g·L^(–1),and maize irrigation at sowing using fresh water.Manure application was conducted under all irrigation treatments,with treatments without manure application used as controls.The results showed that under long-term irrigation with saline water,the application of manure increased the soil organic matter content,exchangeable potassium,available phosphorus,and total nitrogen content in the 0–20 cm soil layer by 46.8%,117.0%,75.7%,and 45.5%,respectively,compared to treatments without manure application.The application of manure reduced soil bulk density.It also increased the proportion of water-stable aggregates and the abundance of bacteria,fungi,and actinomycetes in the tillage soil layer compared to the controls.Because of the salt contained in the manure,the application of manure had dual effects on soil salt content.During the winter wheat season,manure application increased soil salt content.The salt content was significantly reduced during the summer maize season,owing to the strong salt-leaching effects under manure application,resulting in a smaller difference in salt content between the manure and non-manure treatments.During the summer rainfall season,improvements in soil structure under manure application increased the soil desalination rate for the 1 m top soil layer.The desalination rate for 0–40 cm and 40–100 cm was averagely by 39.1%and 18.9%higher,respectively,under manure application as compared with that under the nomanure treatments.The yield of winter wheat under manure application was 0.12%lower than that of the control,owing to the higher salt content during the winter wheat season.In contrast,the yield of summer maize improved by 3.9%under manure application,owing to the increased soil nutrient content and effective salt leaching.The results of this study indicated that manure application helped maintain the soil physical structure,which is important for the long-term use of saline water.In practice,using manure with a low salt content is suggested to reduce the adverse effects of saline water irrigation on soil properties and achieve sustainable saline water use.
文摘Physics Letters(CPL)is a peer-reviewed,international and multidisciplinary journal sponsored by the Chinese Physical Society(CPS)and Institute of Physics,CAS,and hosted online by IOP Publishing Ltd.Launched in 1984 as the flagship journal of CPS,CPL has become one of the most prestigious periodicals published in China,and been among the good choices for worldwide physicists to disseminate their most important breakthroughs.Nowadays it is dedicated to build an internationally recognized platform for researchers to publish original research works in all the branches of fundamental,applied,and interdisciplinary physics.
基金supported by the National Natural Science Foundation of China,No.82072529(to HWHT)Key Laboratory of Guangdong Higher Education Institutes,No.2021KSYS009(to HWHT)the China Postdoctoral Science Foundation,No.2022M720907(to HHG)。
文摘Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity,particularly in aging brains.However,the underlying mechanisms of exercise in cognitive aging remain largely unclear.Adiponectin,a cell-secreted protein hormone,has recently been found to regulate synaptic plasticity and mediate the antidepressant effects of physical exercise.Studies on the neuroprotective effects of adiponectin have revealed potential innovative treatments for Alzheimer's disease.Here,we reviewed the functions of adiponectin and its receptor in the brains of human and animal models of cognitive impairment.We summarized the role of adiponectin in Alzheimer's disease,focusing on its impact on energy metabolism,insulin resistance,and inflammation.We also discuss how exercise increases adiponectin secretion and its potential benefits for learning and memory.Finally,we highlight the latest research on chemical compounds that mimic exerciseenhanced secretion of adiponectin and its receptor in Alzheimer's disease.
文摘1 General information Journal of Geographical Sciences is an international academic journal that publishes papers of the highest quality in physical geography, natural resources, environmental sciences, geographic information sciences, remote sensing and cartography. Manuscripts come from different parts of the world.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金supported by the National Natural Science Foundation of China (Grant No.12374109)the National Key Research and Development Program of China (Grant No.2023YFA1406600)。
文摘In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.
基金Key Project of Undergraduate Teaching Reform Research of Shandong Normal University(No.2024ZJ12)sixth batch of"Sports and Health"special topic of Education Research of Chinese Society of Education。
文摘Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased physical activity(PA)are important contributors to the rising prevalence of DM.This article reviews the research progress on the pathogenesis of DM,the effects of SB and PA on the risk of DM,aiming to explore the influence of different PA intensities,amounts,frequencies,durations and types on the incidence of DM.Research has shown that blood glucose levels tend to increase with the prolongation of SB.Within a certain range,PA intensity and PA amount are negatively correlated with the risk of DM;Performing PA for more than 3 days per week maintains normal glucose tolerance and lower blood pressure;Engaging in 150–300 min of moderate intensity exercise or 75–150 min of high-intensity exercise per week reduces the risk of DM;PA during leisure time reduces the risk of DM,while PA during work increases the risk of DM;Both aerobic training and resistance training reduce the risk of DM,and the combination of the two training methods produces better benefits;Various types of exercises,such as cycling,soccer,aerobics,yoga,tai chi,all reduce the risk of DM.In summary,prolonged SB increases the risk of DM,while appropriate PA reduces the risk of DM.As the intensity,amount,and frequency of PA increase,the effect of reducing DM risk becomes more significant.Different exercise methods have different effects on reducing DM risk.
基金funded in part by the German Research Foundation(Grant reference:496846758).
文摘The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.
基金support from the National Natural Science Foundation of China (Grant Nos.51927807,42077267 and 42277174).
文摘A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.
基金supported by the Key Research and Development Special Project of the Autonomous Region(No.2022B03023-3)the Key Supported Discipline of Health System in Shanghai(No.2023ZDFC0302)。
文摘OBJECTIVE To investigate possible associations between physical function assessment scales,such as Short Physical Performance Battery(SPPB)and Berg Balance Scale(BBS),with all-cause mortality in acute decompensated heart failure(ADHF)patients.METHODS A total of 108 ADHF patients were analyzed from October 2020 to October 2022,and followed up to May 2023.The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis,while for SPPB and BBS,univariate Cox regression analysis was followed by receiver operating characteristic curves,in which the area under the curve represented their predictive accuracy for all-cause mortality.Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores.Optimal cutoff value for BBS was then identified using restricted cubic spline plots,and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test.The clinical utility of BBS was measured using decision curve analysis.RESULTS For baseline characteristics,age,female,blood urea nitrogen,as well as statins,angiotensin-converting enzyme inhibitors,angiotensin II receptor blockers,or angiotensin receptor-neprilysin inhibitors,were predictive for all-cause mortality for ADHF patients.With respect to SPPB and BBS,higher scores were associated with lower all-cause mortality rates for both assessments;similar area under the curves were measured for both(0.774 for SPPB and 0.776 for BBS).Furthermore,BBS≤36.5 was associated with significantly higher mortality,which was still applicable even adjusting for confounding factors;BBS was also found to have great clinical utility under decision curve analysis.CONCLUSIONS BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients,as well as prognosticate on all-cause mortality.Moreover,prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
基金supported by the National Natural Science Foundation Major Research Plan(No.91843301)the Hong Kong General Research Fund(No.12302722)the National Natural Science Foundation of China(Nos.22306150 and 22376079).
文摘N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone(6PPDQ) and its parent 6PPD are ubiquitous in the environment and may induce multi-endpoint toxicity. Electronic waste(e-waste) dismantling is an under-recognized source of 6PPD and 6PPDQ emissions, and there is a lack of epidemiological investigations into their presence and health effects in local populations. This study aimed to determine the urinary concentrations of 6PPD and6PPDQ in children aged 2–7 years from e-waste dismantling areas and evaluate their potential risk to physical growth. We found that children from the e-waste area had significantly elevated urinary concentrations of 6PPD and 6PPDQ(median: 0.073 and 2.34 ng/mL) compared to those in the reference area(0.020 and 0.24 ng/mL, respectively). The estimated urinary excretions of 6PPDQ in the e-waste exposure group were considerably higher than that in the reference group(p < 0.001). Furthermore, a borderline significant association of co-exposure to high levels of 6PPD and 6PPDQ with lower BMI z-score(OR = 1.99, 95% Cl: 1.04,3.82) was observed in the crude model and the model adjusted for age and gender. In conclusion, our study first reported the urinary 6PPD and 6PPDQ concentrations in children from e-waste dismantling areas. The result indicated that e-waste recycling activities contribute to significantly elevated body burdens of 6PPD and 6PPDQ in children, which may be a potential risk factor for physical growth. Further epidemiological and toxicological studies are needed to investigate the exposure and health risks, especially in vulnerable populations.
基金Supported by the National Natural Science Foundation of China,No.82104525Open Foundation of Key Laboratory of Tropical Plant Resource Chemistry of Hainan Province,No.rdzw2024s01.
文摘This article is based on a recent bibliometric analysis of research progress on liver aging.The liver is notable for its extraordinary ability to rejuvenate,thereby safeguarding and maintaining the organism’s integrity.With advancing age,there is a noteworthy reduction in both the liver’s size and blood circulation.Furthermore,the wide range of physiological alterations driven on by aging may foster the development of illnesses.Previous studies indicate that liver aging is linked to impaired lipid metabolism and abnormal gene expression associated with chronic inflammation.Factors such as mitochondrial dysfunction and telomere shortening accumulate,which may result in increased hepatic steatosis,which impacts liver regeneration,metabolism,and other functions.Knowing the structural and functional changes could help elderly adults delay liver aging.Increasing public awareness of anti-aging interventions is essential.Besides the use of dietary supplements,alterations in lifestyle,including changes in dietary habits and physical exercise routines,are the most efficacious means to decelerate the aging process of the liver.This article highlights recent advances in the mechanism research of liver aging and summarizes the promising intervention options to delay liver aging for preventing related diseases.
基金supported by Brazilian agencies CAPES(Finance Code 001)CNPq through PQ productivity scholarship.
文摘Here we compare the efficacy of anti-obesity drugs alone or combined with exercise training on body weight and exercise capacity of obese patients.Randomized clinical trials that assessed the impact of any anti-obesity drug alone or combined with exercise training on body weight,body fat,fat-free mass and cardiorespiratory fitness in obese patients were retrieved from Pubmed and EMBASE up to May 2024.Risk of bias assessment was performed with RoB 2.0,and the GRADE approach assessed the certainty of evidence(CoE)of each main outcome.We included four publications summing up 202 patients.Two publications used orlistat as an anti-obesity drug treatment,while the other two adopted GLP-1 receptor agonist(liraglutide or tirzepatide)as a pharmacotherapy for weight management.Orlistat combined with exercise was superior to change body weight(mean difference(MD):−2.27 kg;95%CI:−2.86 to−1.69;CoE:very low),fat mass(MD:−2.89;95%CI:−3.87 to−1.91;CoE:very low),fat-free mass(MD:0.56;95%CI:0.40–0.72;CoE:very low),and VO_(2)Peak(MD:2.64;95%CI:2.52–2.76;CoE:very low).GLP-1 receptor agonist drugs combined with exercise had a great effect on body weight(MD:−3.96 kg;95%CI:−5.07 to−2.85;CoE:low),fat mass(MD:−1.76;95%CI:−2.24 to−1.27;CoE:low),fat-free mass(MD:0.50;95%CI:−0.98 to 1.98;CoE:very low)and VO_(2)Peak(MD:2.47;95%CI:1.31–3.63;CoE:very low).The results reported here suggest that exercise training remains an important approach in weight management when combined with pharmacological treatment.
基金funded by the Open Research Fund of the State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources,China University of Mining and Technology(Grant No.SKLCRSM23KF018)the National Natural Science Foundation of China(Grant No.52104144)the National Key R&D Program of China(Grant No.2019YFA0705501).
文摘In the context of convection-heating-based in situ oil shale retorting,fractures serve as primary pathways for fluid migration and product extraction.This study investigates the permeability and microstructural evolution of oil shale during water vapor injection in single-fracture and no-fracture scenarios.Three types of oil shale are investigated:intact oil shale,oil shale with a single straight crack,and oil shale with a single hydraulic crack.With increasing water vapor temperature,the permeabilities of the intact oil shale and oil shale with a fractured crack exhibit a trend of initial increase,followed by a decrease,and then a subsequent increase.However,the permeability of oil shale with a single straight crack consistently increases and exceeds that of oil shale with a fractured crack.The temperaturedependent permeability changes in fractured oil shale-a slight decrease in fracture cracks and a gradual increase in straight cracks-mainly occur in the range of 300℃-350℃.The permeability of oil shale with a straight crack is approximately three times that of oil shale with a fractured crack.This is attributed to the retention of viscous asphaltene and the frictional resistance caused by the rough fracture structure.For the oil shale with a single crack,the crack permeability has a dominant influence on the overall permeability of the rock.The contribution of the permeability of the straight crack exceeds 94.6%,while that of the permeability of the fractured crack is greater than 86.1%.The disparity in the contribution of these two crack structures is evident at 350℃-550℃.
文摘BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding structured,multimodal rehabilitation programs targeting biomechanical deficits in IFI.This case report evaluates the efficacy of a multimodal rehabilitation program addressing a critical gap in conservative management strategies.CASE SUMMARY The patient underwent comprehensive physical and clinical examination,including hip X-ray and magnetic resonance imaging investigations.The patient completed the Musculoskeletal Health Questionnaire(MSK-HQ)and numerical pain rating scale(NPRS).The patient underwent a two-month tailored structured physical therapy intervention and repeated the same assessment afterwards.The patient's substantial reduction in pain,reflected by a significant decrease in the patient’s NPRS score from 9 to 3 points,signifies a positive clinical response.This outcome,coupled with the significant improvement in the patient's health-related quality of life according to the MSK-HQ score,which increased from 12 to 48 points,underscores the success of our research.CONCLUSION The study highlights the importance of a comprehensive approach to diagnosing and managing IFI,combining clinical assessment with imaging and implementing a multimodal rehabilitation program for optimal outcomes.
基金the National Natural Science Foundation of China(No.42076069)。
文摘The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the factors controlling their development remain subjects of debate.This paper,based on seismic profile analysis,employs physical simulation experiments to establish a'wedge'type subduction model.The study explores the influence of the initial wedge angle,horizontal sand layer thickness,and the presence or absence of a decollement layer on the structural styles of the thrust wedge.Experimental results indicate that as the initial wedge angle decreases from 11°to 8°,the lateral growth of the thrust wedge increases,whereas vertical growth diminishes.When the horizontal sand layer thickness is reduced from 4.5 cm to 3.0 cm,the spacing between the frontal thrusts decreases and the number of thrust faults increases.Both lateral and vertical growth are relatively reduced,resulting in a smaller thrust wedge.When a decollement layer is present,the structural style exhibits layered deformation.The decollement layer constrains the development of back thrusts and promotes the localized formation of frontal thrusts.In conclusion,the imbricate thrust faults at the frontal edge of the Makran accretionary wedge are primarily controlled by the characteristics of the wedge itself and the presence of the decollement layer.
文摘It explores the integration of rehabilitation and palliative care in cancer management,advocating for a holistic approach that addresses the diverse needs of patients throughout their treatment journey.Traditional cancer care often prioritizes curative interventions at the expense of overall well-being,leading to a fragmented experience for patients.By combining rehabilitation-focused on restoring function and improving physical health-with palliative care-emphasizing symptom management and quality of life-healthcare providers can create a comprehensive support system.The essay highlights the importance of interdisciplinary collaboration among healthcare professionals,as well as the need for education and training to implement this integrated model effectively.Additionally,it addresses potential barriers such as funding limitations and institutional resistance.Ultimately,the integration of these two disciplines represents a critical evolution in cancer care,enhancing patient outcomes and ensuring that individuals receive compassionate,patient-centered support throughout their journey.
文摘Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.
基金the North Dakota Industrial Commission (NDIC) for their financial supportprovided by the University of North Dakota Computational Research Center。
文摘Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.