In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates t...In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.展开更多
The ultra-low porosity and permeability,as well as complex occurrence and transport state of shale reservoir make it possess special L-type production characteristic curve and complicated shale gas flow mechanism.To s...The ultra-low porosity and permeability,as well as complex occurrence and transport state of shale reservoir make it possess special L-type production characteristic curve and complicated shale gas flow mechanism.To solve the difficulty of collecting complete production data due to short production time and operation discontinuity,a full-diameter core physical simulation experiment on the full lifecycle production process of shale gas well depletion is conducted with the purpose of obtaining many important production data including complete pressure and daily gas output in the simulated production process of shale gas well.The experimental results show the production characteristic from simulation is consistent with those from gas well.Based on the simulation data,the critical desorption pressure(12 MPa)of core,free gas production(3820.8 mL),adsorbed gas production(2151.2 mL),the proportion of the daily gas production between free and absorbed gas under different time and formation pressure,as well as the production time and final recovery rate corresponding to abandoned pressure,can be determined accurately.Numerical inversion is carried out to calculate the production performance curve of shale gas well and predict the development effect of gas well based on well testing and similarity analysis of the dimensionless time between core experiment and gas well production.Finally,the permeability and the fracturing effect(fracture network density)as the keys to the effective development of shale gas reservoirs are proposed.The permeability is the fundamental factor and the fracturing technology is the major means.展开更多
To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.Th...To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.展开更多
We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR...We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
Based on seismic and drilling data,the reactivation mechanism of the pre-existing basement F4 strike-slip faultin Nanpu sag and its controlling effect on hydrocarbon accumulation difference are systematically studied....Based on seismic and drilling data,the reactivation mechanism of the pre-existing basement F4 strike-slip faultin Nanpu sag and its controlling effect on hydrocarbon accumulation difference are systematically studied.By defining fault activation stages,back-stripping fault throw and physical modeling,it is found that the Nanpu No.4 structural zone formed by the Cenozoic reactivity of the F4 fault grew from south to north,with strike-slip deformation dominated in the south and extensional deformation dominated in the north.Faults in the No.4 structural zone and those in the adjacent No.2 and No.3 structural zones were different fault systems,which grew separately,contacted and connected,and finally interwove under the action of unified stress field.By constructing the identification chart of deformation mechanisms of reactivation of pre-existing faults,it is concluded that during the sedimentary period of the Paleogene Shahejie Formation,F4 fault was reactivated by strike-slip faulting,and during the sedimentary period of Paleogene Dongying Formation and Neogene Guantao-Minghuazhen formations,it was reactivated by oblique extension.The controlling effects of Cenozoic reactivation of F4 fault on hydrocarbon accumulation include:(1)As the oil-source fault,it controlled the vertical cross-layer migration of oil and gas.(2)It gave rise to strike-slip transfer zone to control the distribution of sand bodies.(3)It grew upward and interacted with faults in the neighboring area,controlling the formation of two types of traps,and was favorable for oil and gas accumulation.展开更多
Tight sandstone gas reservoirs commonly contain water,so liquid loading often appears near wellbores,leading to production decline and even shutdown of gas wells.Therefore,the study on the change of water saturation n...Tight sandstone gas reservoirs commonly contain water,so liquid loading often appears near wellbores,leading to production decline and even shutdown of gas wells.Therefore,the study on the change of water saturation near wellbores is of great significance to understanding the water production mechanisms of gas wells.In this paper,a set of physical simulation experiment procedures of identifying the change of water saturation near wellbores was designed according to the principle of radial well seepage of gas wells,and the production performance after vertical well fracturing in gas reservoirs was simulated by connecting tight cores with a diameter of 10.5 cm,3.8 cm and 2.5 cm in series in a descending order of distance.According to the depressurizing production mode of gas wells,tubes with small diameters of 20,30,40 and 50 mm were used to simulate gas well tubing to control the gas production rate.And the change of water saturation near wellbore in the process of depletion production and its influencing factors were investigated.Finally,combined with actual data of production wells,the water saturation and water production of gas wells near wellbores and in different zones were calculated at the above four different small diameters of tubes and the changes thereof were also analyzed.The following results were obtained.First,each gas production rate corresponds to a critical water saturation.When the initial water saturation is lower than the critical value,the formation water flowing near the wellbore and in the middle zone can be carried out along with the production of gas and no liquid loading is formed.Second,when the initial water saturation is higher than the critical value,a large amount of formation water migrating from the far-wellbore zones accumulates near the wellbore,and thus liquid loading occurs at the bottom hole.Third,when the initial water saturation is equal to the critical value,the higher the gas production rate is,the more easily liquid loading tends to form near the wellbore.Fourth,for the same water saturation,water production increases and recovery factor decreases with the increase of gas production rate.In conclusion,the cumulative water production chart of a gas well generated by the physical simulation experiment method proposed in this paper agrees well with the water production behavior of the corresponding gas well.The research results are conducive to the effective prediction of gas well water production and can be used as guidance for the reasonable gas well water control.展开更多
The main zone of production of Sinian gas reservoirs in the Sichuan Basin(China)is the Deng 4 member of the Gaoshiti–Moxi structure.In the Deng 4 member,the rock type is mostly dolomite,and the main types of storage ...The main zone of production of Sinian gas reservoirs in the Sichuan Basin(China)is the Deng 4 member of the Gaoshiti–Moxi structure.In the Deng 4 member,the rock type is mostly dolomite,and the main types of storage space are brecciated interporosity and large-scale interporosity characterized by low porosity and low permeability(average porosity:3.21%,average permeability:2.19 mD).In the Gaoshiti structure of the Deng 4 member gas reservoir,annual gas production of 60 billion cubic meters has been realized using differential segmented acid fracturing stimulation technology.However,with development of the Moxi structure,such technology is unable to adapt the reservoir because it requires continuous optimization according to reservoir characteristics.To provide effective support for optimization of reservoir stimulation technology,this study performed experiments using a large-scale true triaxialacid fracturing model.On the basis of the simulation of the reservoir reconstruction process,optimization of the process was investigated,an optimization scheme was proposed,and a field test was performed.The results,which indicated that gelling acid fracturing technology can effectively improve the stimulation effect of the Deng 4 member of the Moxi gas reservoir and substantially increase single-well production,could provide technical support for enhanced production of the Gaoshiti–Moxi gas reservoir.展开更多
The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,imp...The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.展开更多
Taking deep coal-rock gas in the Yulin and Daning-Jixian areas of the Ordos Basin,NW China,as the research object,full-diameter coal rock samples with different cleat/fracture development degrees from the Carboniferou...Taking deep coal-rock gas in the Yulin and Daning-Jixian areas of the Ordos Basin,NW China,as the research object,full-diameter coal rock samples with different cleat/fracture development degrees from the Carboniferous Benxi Formation were selected to conduct physical simulation and isotope monitoring experiments of the full-life-cycle depletion development of coal-rock gas.Based on the experimental results,a dual-medium carbon isotope fractionation(CIF)model coupling cleats/fractures and matrix pores was constructed,and an evaluation method for free gas production patterns was established to elucidate the carbon isotope fractionation mechanism and adsorbed/free gas production characteristics during deep coal-rock gas development.The results show that the deep coal-rock gas development process exhibits a three-stage carbon isotope fractionation pattern:“Stable(Ⅰ)→Decrease(Ⅱ)→Increase(Ⅲ)”.A rapid decline in boundary pressure in stageⅢleads to fluctuations in isotope value,characterized by a“rapid decrease followed by continued increase”,with free gas being produced first and long-term supply of adsorbed gas.The CIF model can effectively match measured gas pressure,cumulative gas production,and δ^(13)C_(1) value of produced gas.During the first two stages of isotope fractionation,free gas dominated cumulative production.During the mid-late stages of slow depletion production,the staged pressure control development method can effectively increase the gas recovery.The production of adsorbed gas is primarily controlled by the rock's adsorption capacity and the presence of secondary flow channels.Effectively enhancing the recovery of adsorbed gas during the late stage remains crucial for maintaining stable production and improving the ultimate recovery factor of deep coal-rock gas.展开更多
基金Supported by the National Natural Science Foundation of China(42362026)Key R&D Project of Xinjiang Uygur Autonomous Region(2024B01015).
文摘In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.
基金The work was supported by the National Science and Technology Major Project(2016ZX05062,2017ZX05037-001).
文摘The ultra-low porosity and permeability,as well as complex occurrence and transport state of shale reservoir make it possess special L-type production characteristic curve and complicated shale gas flow mechanism.To solve the difficulty of collecting complete production data due to short production time and operation discontinuity,a full-diameter core physical simulation experiment on the full lifecycle production process of shale gas well depletion is conducted with the purpose of obtaining many important production data including complete pressure and daily gas output in the simulated production process of shale gas well.The experimental results show the production characteristic from simulation is consistent with those from gas well.Based on the simulation data,the critical desorption pressure(12 MPa)of core,free gas production(3820.8 mL),adsorbed gas production(2151.2 mL),the proportion of the daily gas production between free and absorbed gas under different time and formation pressure,as well as the production time and final recovery rate corresponding to abandoned pressure,can be determined accurately.Numerical inversion is carried out to calculate the production performance curve of shale gas well and predict the development effect of gas well based on well testing and similarity analysis of the dimensionless time between core experiment and gas well production.Finally,the permeability and the fracturing effect(fracture network density)as the keys to the effective development of shale gas reservoirs are proposed.The permeability is the fundamental factor and the fracturing technology is the major means.
基金provided by the National Natural Science Foundation of China(No.51074165)the NationalKey Basic Research Program of China(No.2013CB227905)the Qing-Lan Project of China Scholarship Council
文摘To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.
基金Funded by the National Natural Science Foundation of China(51202304)the China Postdoctoral Science Foundation(2014M552320)+1 种基金Scientific,the Technological Talents’Special Funds of Wanzhou District and Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401016)the Youth Project of Chongqing Three Gorges College(13QN-20)
文摘We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
基金Supported by the Heilongjiang Outstanding Young Talents Support Project(140119002)Research Project of PetroChina Science and Technology Innovation Fund(2020D-5007-0108)PetroChina"14th Five-Year Plan"Science and Technology Project(2021DJ0701).
文摘Based on seismic and drilling data,the reactivation mechanism of the pre-existing basement F4 strike-slip faultin Nanpu sag and its controlling effect on hydrocarbon accumulation difference are systematically studied.By defining fault activation stages,back-stripping fault throw and physical modeling,it is found that the Nanpu No.4 structural zone formed by the Cenozoic reactivity of the F4 fault grew from south to north,with strike-slip deformation dominated in the south and extensional deformation dominated in the north.Faults in the No.4 structural zone and those in the adjacent No.2 and No.3 structural zones were different fault systems,which grew separately,contacted and connected,and finally interwove under the action of unified stress field.By constructing the identification chart of deformation mechanisms of reactivation of pre-existing faults,it is concluded that during the sedimentary period of the Paleogene Shahejie Formation,F4 fault was reactivated by strike-slip faulting,and during the sedimentary period of Paleogene Dongying Formation and Neogene Guantao-Minghuazhen formations,it was reactivated by oblique extension.The controlling effects of Cenozoic reactivation of F4 fault on hydrocarbon accumulation include:(1)As the oil-source fault,it controlled the vertical cross-layer migration of oil and gas.(2)It gave rise to strike-slip transfer zone to control the distribution of sand bodies.(3)It grew upward and interacted with faults in the neighboring area,controlling the formation of two types of traps,and was favorable for oil and gas accumulation.
基金supported by the National Major Science and Technology Project“Experimental Evaluation of Spatial Characteristics and Seepage Law of FracturedPorous Reservoir”(No.:2016ZX05052-002-001)National Major Science and Technology Project“Invasion Mechanism of Fractured-Porous(Cave)and Bottom Water Gas Reservoir and Its Impact on Gas Reservoir Stability and Recovery”(No.:2017ZX05030-003-003-001)China National Petroleum Corporation Scientific Research and Technology Development Project(No.2016B-1501).
文摘Tight sandstone gas reservoirs commonly contain water,so liquid loading often appears near wellbores,leading to production decline and even shutdown of gas wells.Therefore,the study on the change of water saturation near wellbores is of great significance to understanding the water production mechanisms of gas wells.In this paper,a set of physical simulation experiment procedures of identifying the change of water saturation near wellbores was designed according to the principle of radial well seepage of gas wells,and the production performance after vertical well fracturing in gas reservoirs was simulated by connecting tight cores with a diameter of 10.5 cm,3.8 cm and 2.5 cm in series in a descending order of distance.According to the depressurizing production mode of gas wells,tubes with small diameters of 20,30,40 and 50 mm were used to simulate gas well tubing to control the gas production rate.And the change of water saturation near wellbore in the process of depletion production and its influencing factors were investigated.Finally,combined with actual data of production wells,the water saturation and water production of gas wells near wellbores and in different zones were calculated at the above four different small diameters of tubes and the changes thereof were also analyzed.The following results were obtained.First,each gas production rate corresponds to a critical water saturation.When the initial water saturation is lower than the critical value,the formation water flowing near the wellbore and in the middle zone can be carried out along with the production of gas and no liquid loading is formed.Second,when the initial water saturation is higher than the critical value,a large amount of formation water migrating from the far-wellbore zones accumulates near the wellbore,and thus liquid loading occurs at the bottom hole.Third,when the initial water saturation is equal to the critical value,the higher the gas production rate is,the more easily liquid loading tends to form near the wellbore.Fourth,for the same water saturation,water production increases and recovery factor decreases with the increase of gas production rate.In conclusion,the cumulative water production chart of a gas well generated by the physical simulation experiment method proposed in this paper agrees well with the water production behavior of the corresponding gas well.The research results are conducive to the effective prediction of gas well water production and can be used as guidance for the reasonable gas well water control.
文摘The main zone of production of Sinian gas reservoirs in the Sichuan Basin(China)is the Deng 4 member of the Gaoshiti–Moxi structure.In the Deng 4 member,the rock type is mostly dolomite,and the main types of storage space are brecciated interporosity and large-scale interporosity characterized by low porosity and low permeability(average porosity:3.21%,average permeability:2.19 mD).In the Gaoshiti structure of the Deng 4 member gas reservoir,annual gas production of 60 billion cubic meters has been realized using differential segmented acid fracturing stimulation technology.However,with development of the Moxi structure,such technology is unable to adapt the reservoir because it requires continuous optimization according to reservoir characteristics.To provide effective support for optimization of reservoir stimulation technology,this study performed experiments using a large-scale true triaxialacid fracturing model.On the basis of the simulation of the reservoir reconstruction process,optimization of the process was investigated,an optimization scheme was proposed,and a field test was performed.The results,which indicated that gelling acid fracturing technology can effectively improve the stimulation effect of the Deng 4 member of the Moxi gas reservoir and substantially increase single-well production,could provide technical support for enhanced production of the Gaoshiti–Moxi gas reservoir.
文摘The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.
基金Youth Fund of National Natural Science Foundation of China(42302170)CNPC Scientific and Technological Innovation Fund(2022DQ02-0104)RIPED Open Project Fund(2024-KFKT-31).
文摘Taking deep coal-rock gas in the Yulin and Daning-Jixian areas of the Ordos Basin,NW China,as the research object,full-diameter coal rock samples with different cleat/fracture development degrees from the Carboniferous Benxi Formation were selected to conduct physical simulation and isotope monitoring experiments of the full-life-cycle depletion development of coal-rock gas.Based on the experimental results,a dual-medium carbon isotope fractionation(CIF)model coupling cleats/fractures and matrix pores was constructed,and an evaluation method for free gas production patterns was established to elucidate the carbon isotope fractionation mechanism and adsorbed/free gas production characteristics during deep coal-rock gas development.The results show that the deep coal-rock gas development process exhibits a three-stage carbon isotope fractionation pattern:“Stable(Ⅰ)→Decrease(Ⅱ)→Increase(Ⅲ)”.A rapid decline in boundary pressure in stageⅢleads to fluctuations in isotope value,characterized by a“rapid decrease followed by continued increase”,with free gas being produced first and long-term supply of adsorbed gas.The CIF model can effectively match measured gas pressure,cumulative gas production,and δ^(13)C_(1) value of produced gas.During the first two stages of isotope fractionation,free gas dominated cumulative production.During the mid-late stages of slow depletion production,the staged pressure control development method can effectively increase the gas recovery.The production of adsorbed gas is primarily controlled by the rock's adsorption capacity and the presence of secondary flow channels.Effectively enhancing the recovery of adsorbed gas during the late stage remains crucial for maintaining stable production and improving the ultimate recovery factor of deep coal-rock gas.