期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
255 W picosecond MOPA laser based on self-made Yb-doped very-large-mode-area photonic crystal fiber 被引量:1
1
作者 王子薇 李秋瑞 +4 位作者 王兆坤 邹峰 白洋 冯素雅 周军 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第8期54-57,共4页
We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core ... We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber. 展开更多
关键词 photonic repetition amplification aperture cladding pumped locked sintering oscillator doping
原文传递
Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light 被引量:11
2
作者 Yang Yang1 Su Ding +6 位作者 Teppei Araki Jinting Jiu Tohru Sugahara Jun Wang Jan Vanfleteren Tsuyoshi Sekitani Katsuaki Suganuma 《Nano Research》 SCIE EI CAS CSCD 2016年第2期401-414,共14页
Silver nanowires (AgNWs) have emerged as a promising nanomaterial for next generation stretchable electronics. However, until now, the fabrication of AgNW- based components has been hampered by complex and time-cons... Silver nanowires (AgNWs) have emerged as a promising nanomaterial for next generation stretchable electronics. However, until now, the fabrication of AgNW- based components has been hampered by complex and time-consuming steps. Here, we introduce a facile, fast, and one-step methodology for the fabrication of highly conductive and stretchable AgNW/polyurethane (PU) composite electrodes based on a high-intensity pulsed light (HIPL) technique. HIPL simultaneously improved wire-wire junction conductivity and wire-substrate adhesion at room temperature and in air within 50 μs, omitting the complex transfer-curing-implanting process. Owing to the localized deformation of PU at interfaces with AgNWs, embedding of the nanowires was rapidly carried out without substantial substrate damage. The resulting electrode retained a low sheet resistance (high electrical conductivity) of 〈10 Ω/sq even under 100% strain, or after 1,000 continuous stretching-relaxation cycles, with a peak strain of 60%. The fabricated electrode has found immediate application as a sensor for motion detection. Furthermore, based on our electrode, a light emitting diode (LED) driven by integrated stretchable AgNW conductors has been fabricated. In conclusion, our present fabrication approach is fast, simple, scalable, and cost- efficient, making it a good candidate for a future roll-to-roll process. 展开更多
关键词 silver nanowires stretchable electrode photonic sintering nanofabrication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部