期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction 被引量:14
1
作者 Lei Cheng Dainan Zhang +2 位作者 Yulong Liao Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期131-140,共10页
The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high... The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2. 展开更多
关键词 Cd0.8Zn0.2S flowers Self-assembly growth photocatalytic co2 reduction High selectivity Visible-light irradiation
在线阅读 下载PDF
Ag-Cu Nanoparticles Supported on N-Doped TiO2 Nanowire Arrays for Efficient Photocatalytic CO2 Reduction 被引量:1
2
作者 Xiao-nong Wang Jun Ma +2 位作者 Yang-guang Hu Ran Long Yu-jie Xiong 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期695-700,736,共7页
Photocatalytic reduction of CO2 into various types of fuels has attracted great interest,and serves as a potential solution to addressing current global warming and energy challenges.In this work,Ag-Cu nanoparticles a... Photocatalytic reduction of CO2 into various types of fuels has attracted great interest,and serves as a potential solution to addressing current global warming and energy challenges.In this work,Ag-Cu nanoparticles are densely supported on N-doped TiO2 nanowire through a straightforward nanofabrication approach.The range of light absorption by N-doped TiO2 can be tuned to match the plasmonic band of Ag nanoparticles,which allows synergizing a resonant energy transfer process with the Schottky junction.Meanwhile,Cu nanoparticles can provide active sites for the reduction of CO2 molecules.Remarkably,the performance of photocatalytic CO2 reduction is improved to produce CH4 at a rate of 720μmol·g-1·h-1 under full-spectrum irradiation. 展开更多
关键词 photocatalytic co2 reduction Schottky junction Energy transfer TiO2 Nanoparticles
在线阅读 下载PDF
Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals 被引量:19
3
作者 Xuyang Xiong Yufei Zhao +4 位作者 Run Shi Wenjin Yin Yunxuan Zhao Geoffrey I.N.Waterhouse Tierui Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第12期987-994,M0003,共9页
Photocatalytic CO2 reduction holds promise as a future technology for the manufacture of fuels and commodity chemicals.However,factors controlling product selectivity remain poorly understood.Herein,we compared the pe... Photocatalytic CO2 reduction holds promise as a future technology for the manufacture of fuels and commodity chemicals.However,factors controlling product selectivity remain poorly understood.Herein,we compared the performance of a homologous series of Zn-based layered double hydroxide(ZnM-LDH)photocatalysts for CO2 reduction.By varying the trivalent or tetravalent metal cations in the ZnM-LDH photocatalysts(M=Ti4+,Fe3+,Co3+,Ga3+,Al3+),the product selectivity of the reaction could be precisely controlled.ZnTi-LDH afforded CH4 as the main reduction product;ZnFe-LDH and ZnCo-LDH yielded H2 exclusively from water splitting;whilst ZnGa-LDH and ZnAl-LDH generated CO.In-situ diffuse reflectance infrared measurements,valence band XPS and density function theory calculations were applied to rationalize the CO2 reduction selectivities of the different ZnM-LDH photocatalysts.The analyses revealed that the d-band center(ed)position of the M3+or M4+cations controlled the adsorption strength of CO2 and thus the selectivity to carbon-containing products or H2.Cations with d-band centers relatively close to the Fermi level(Ti4+,Ga3+and Al3+)adsorbed CO2 strongly yielding CH4 or CO,whereas metal cations with d-band centers further from the Fermi level(Fe3+and Co3+)adsorbed CO2 poorly,thereby yielding H2 only(from water splitting).Our findings clarify the role of trivalent and tetravalent metal cations in LDH photocatalysts for the selective CO2 reduction,paving new ways for the development of improved LDH photocatalyst with high selectivities to specific products. 展开更多
关键词 photocatalytic co2 reduction Layered double hydroxide SELECTIVITY Tri/tetravalent metal cations d band center
原文传递
Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide 被引量:12
4
作者 Yun-Xiang Pan Zheng-Qing Sun +4 位作者 Huai-Ping Cong Yu-Long Men Sen Xin Jie Song Shu-Hong Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第6期1689-1700,共12页
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affec... Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga203), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0umol.h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 gmol-h-1) and Pt/TiO2(P25) (6.7 gmol.h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga203, thus enhancing the photocatalytic activity of Pt/Ga203. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction. 展开更多
关键词 photocatalytic co2reduction oxygen vacancy metal-oxide-based catalyst C02 adsorption
原文传递
Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles 被引量:4
5
作者 Piyush Kar Samira Farsinezhad +6 位作者 Najia Mahdi Yun Zhang Uchenna Obuekwe Himani Sharma Jing Shen Natalia Semagina Karthik Shankar 《Nano Research》 SCIE EI CAS CSCD 2016年第11期3478-3493,共16页
Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In t... Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In this regard, we report here enhanced CH4 formation rates of 25 and 60 μmol·g^-1·h^-1 by photocatalytic CO2 reduction using hitherto unused ZnPd NPs as well as Au and Ru NPs. The NPs are formed by colloidal synthesis and grafted onto short n-type anatase TiO2 nanotube arrays (TNAs), grown anodically on transparent glass substrates. The interfacial electric fields in the NP-grafted TiO2 nanotubes were probed by ultraviolet photoelectron spectroscopy (UPS). Au NP-grafted TiO2 nanotubes (Au-TNAs) showed no band bending, but a depletion region was detected in Ru NP-grafted TNAs (Ru-TNAs) and an accumulation layer was observed in ZnPd NP-grafted TNAs (ZnPd-TNAs). Temperature programmed desorption (TPD) experiments showed significantly greater CO2 adsorption on NP-grafted TNAs. TNAs with grafted NPs exhibit broader and more intense UV-visible absorption bands than bare TNAs. We found that CO2 photoreduction by nanoparticle-grafted TNAs was driven not only by ultraviolet photons with energies greater than the TiO2 band gap, but also by blue photons close to and below the anatase band edge. The enhanced rate of CO2 reduction is attributed to superior use of blue photons in the solar spectrum, excellent reactant adsorption, efficient charge transfer to adsorbates, and low recombination losses. 展开更多
关键词 metal nanoparticles (NPs) TiO2 nanotube arrays(TNAs) colloidal synthesis band bending built-in potential photocatalytic co2reduction semiconductorheterojunctions
原文传递
Nitrogen-doped TiO_2 microsheets with enhanced visible light photocatalytic activity for CO_2 reduction 被引量:9
6
作者 Maxwell Selase Akple 刘敬祥 +4 位作者 秦志扬 S.Wageh Ahmed.A.Al-Ghamdi 余家国 刘升卫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2127-2134,共8页
Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by ... Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination. 展开更多
关键词 Nitrogen self-doping TITANIA (001) face Surface heterojunction photocatalytic co2 reduction
在线阅读 下载PDF
Step-scheme CdS/TiO_(2) nanocomposite hollow microsphere with enhanced photocatalytic CO_(2) reduction activity 被引量:13
7
作者 Zhongliao Wang Yifan Chen +3 位作者 Liuyang Zhang Bei Cheng Jiaguo Yu Jiajie Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第21期143-150,共8页
Converting solar energy into chemical energy by artificial photosynthesis is promising in addressing the issues of the greenhouse effect and fossil fuel crisis.Herein,a novel photocatalyst,i.e.CdS/TiO_(2) hollow micro... Converting solar energy into chemical energy by artificial photosynthesis is promising in addressing the issues of the greenhouse effect and fossil fuel crisis.Herein,a novel photocatalyst,i.e.CdS/TiO_(2) hollow microspheres(HS),were dedicatedly designed to boost overall photocatalytic efficiency.TiO_(2) nanoparticles were in-situ decorated on the inside and outside the shell of Cd S HS,ensuring close contact between TiO_(2) and CdS.The CdS/TiO2 HS with abundant mesopores inside of the shell boost the light absorption via multiscattering effect as well as accessible to reactions in all directions.The heterojunction was scrutinized and the charge transfer across it was revealed by in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS).Ultimately,the charge transfer in this composite was determined to follow stepscheme mechanism,which not only facilitates the separation of charge carriers but also preserves strong redox ability.Benefited from the intimate linkage between Cd S and TiO_(2) and the favorable step-scheme heterojunction,enhanced photocatalytic CO_(2) reduction activity was accomplished.The CH4 yield rate of CdS/TiO_(2) reaches 27.85μmol g^(–1) h^(–1),which is 145.6 and 3.8 times higher than those of pristine CdS and TiO_(2),respectively.This work presents a novel insight into constructing step-scheme photocatalytic system with desirable performance. 展开更多
关键词 Step-scheme heterojunction CDS TiO_(2) Hollow microspheres photocatalytic co2 reduction
原文传递
Construction of efficient active sites through cyano‐modified graphitic carbon nitride for photocatalytic CO_(2) reduction 被引量:5
8
作者 Fang Li Xiaoyang Yue +2 位作者 Haiping Zhou Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1608-1616,共9页
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ... The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts. 展开更多
关键词 Graphitic carbon nitride Cyano group modification Active sites Electron acceptor Porous structure photocatalytic co2 reduction
在线阅读 下载PDF
Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysts in the reduction of CO2 to CH4 被引量:2
9
作者 Martin Dilla Anna Pougin Jennifer Strunk 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期277-283,共7页
Crystalline TiO(P25) and isolated titanate species in a ZSM-5 structure(TS-1) were modified with Au and Ag, respectively, and tested in the gas-phase photocatalytic COreduction under high purity conditions. The no... Crystalline TiO(P25) and isolated titanate species in a ZSM-5 structure(TS-1) were modified with Au and Ag, respectively, and tested in the gas-phase photocatalytic COreduction under high purity conditions. The noble metal modification was performed by photodeposition. Light absorbance properties of the catalysts are examined with UV–Vis spectroscopy before and after the activity test. In the gas-phase photocatalytic COreduction, it was observed that the catalysts with Ag nanostructures are more active than those with Au nanostructures. It is thus found that the energetic difference between the band gap energy of the semiconductor and the position of the plasmon is influencing the photocatalytic activity.Potentially, plasmon excitation due to visible light absorption results in plasmon resonance energy, which affects the excitation of the semiconductor positively. Therefore, an overlap between band gap energy of the semiconductor and metal plasmon is needed. 展开更多
关键词 photocatalytic co2 reduction Plasmon resonance Methane formation TS-1 P25 Noble metal photodeposition High-purity gas-phase photoreactor
在线阅读 下载PDF
Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction 被引量:23
10
作者 Yang Xia Bei Cheng +2 位作者 Jiajie Fan Jiaguo Yu Gang Liu 《Science China Materials》 SCIE EI CSCD 2020年第4期552-565,共14页
Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conver... Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF. 展开更多
关键词 near-infrared light nitrogen-doped graphene foams ZnIn2S4 nanowalls selective co2 capture co2 photocatalytic reduction
原文传递
Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling 被引量:22
11
作者 Quan Xie Wanmei He +3 位作者 Shengwei Liu Chuanhao Li Jinfeng Zhang Po Keung Wong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期140-153,共14页
Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combi... Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combining these carbon-involved photocatalytic oxidation-reduction processes together,by which an artificial photocatalytic carbon cycling process can be established.The key challenge lies in the exploitation of efficient bifunctional photocatalysts,capable of triggering both aerobic oxidation and anaerobic reduction reactions.In this work,a bifunctional ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst is successfully constructed,which not only demonstrates superior aerobic photocatalytic oxidation performance in degrading an organic pollutant(using the dye,Rhodamine B as a model),but also exhibits impressive photocatalytic CO2 reduction performance under anaerobic conditions.Moreover,a direct conversion of Rhodamine B to solar fuels in a one-pot anaerobic reactor can be achieved with the as-prepared ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst.The excellent bifunctional photocatalytic performance of the g-C3N4/Bi/BiVO4 photocatalyst is associated with the formation of efficient S-scheme hybrid junctions,which contribute to promoting the appropriate charge dynamics,and sustaining favorable charge potentials.The formation of the S-scheme heterojunction is supported by scavenger studies and density functional theory calculations.Moreover,the in-situ formed plasmonic metallic Bi nanoparticles in the S-scheme hybrid g-C3N4/Bi/BiVO4 photocatalyst enhances vectorial interfacial electron transfer.This novel bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalyst system provides new insights for the further development of an integrated aerobic-anaerobic reaction system for photocatalytic carbon cycling. 展开更多
关键词 S-scheme Plasmonic Bi nanoparticles photocatalytic co2 reduction photocatalytic degradation of organic pollutants Carbon cycling
在线阅读 下载PDF
Hierarchically nanostructured porous TiO_2(B) with superior photocatalytic CO_2 reduction activity 被引量:11
12
作者 Tingmin Di Jinfeng Zhang +2 位作者 Bei Cheng Jiaguo Yu Jingsan Xu 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第3期344-350,共7页
Hierarchically nanostructured, porous TiO_2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by sc... Hierarchically nanostructured, porous TiO_2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO_2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO_2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO_2 adsorption as well as CO_2 conversion. The TiO_2(B)nanostructures exhibited marked photocatalytic activity for CO_2 reduction to methane and methanol. Anatase TiO_2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO_2(B) than that of anatase TiO_2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO_2 under illumination over TiO_2(B) photocatalyst. 展开更多
关键词 photocatalytic co2 reduction TiO2(B) hierarchical nanostructure anatase TiO2
原文传递
10BaF_2:NaF,Na_3AlF_6/TiO_2 composite as a novel visible-light-driven photocatalyst based on upconversion emission 被引量:1
13
作者 刘恩周 樊君 +2 位作者 胡晓云 侯文倩 代宏哲 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期249-256,共8页
A rare-earth free upconversion luminescent material, 10BaF2:NaF, Na3AIF6, is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm-610 nm) into ... A rare-earth free upconversion luminescent material, 10BaF2:NaF, Na3AIF6, is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm-610 nm) into ultraviolet light (290 nm 350 nm), and two emission peaks at 304 nm and 324 nm are observed under the excitation of 583 nm at room temperature. Subsequently, 10BaF2:NaF, Na3AIF6/TiO2 composite photocatalyst is prepared and its catalytic activity is evaluated by the photocatalytic reduction of CO2 under visible light irradiation (λ〉 515 nm). The results show that 10BaF2:NaF, Na3AIF6/TiO2 is a more effective photocatalyst for CO2 reduction than pure TiO2, their corresponding methanol yields are 179 and 0 μmol/g-cat under the same conditions. Additionally, the mechanism of photocatalytic reduction of CO2 on 10BaF2:NaF, Na3AIF6/TiO2 is proposed. 展开更多
关键词 rare-earth free upconversion luminescent material ultraviolet emission titanium dioxide photocatalytic reduction of co2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部