The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framewor...The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framework(MOF)Bi-NH_(2)-BDC was prepared and characterized,and the adsorption characteristics of Bi-NH_(2)-BDCwere investigated with typical PPCPs-diclofenac sodium(DCF).It was found that DCF mainly covered the adsorbent surface as a single molecular layer,the adsorption reaction was a spontaneous,entropyincreasing exothermic process and the adsorption mechanisms between Bi-NH_(2)-BDC and DCF were hydrogen bonding,π-πinteractions and electrostatic interactions.In addition,Bi-NH_(2)-BDC also had considerable photocatalytic properties,and its application in adsor-bent desorption treatment effectively solved the problem of secondary pollution,achieving a green and sustainable adsorption desorption cycle.展开更多
Semi-heterogeneous photocatalysis has emerged as a powerful and productive platform in organic chemistry,which provides mild and eco-friendly conditions for a diverse range of bond-forming reactions.The synergy of hom...Semi-heterogeneous photocatalysis has emerged as a powerful and productive platform in organic chemistry,which provides mild and eco-friendly conditions for a diverse range of bond-forming reactions.The synergy of homogeneous catalysts and heterogeneous catalysts inherits their main advantages,such as higher activities,easy separation and superior recyclability.In this review,we summarize the recent advances in recyclable semi-heterogenous protocols for the light promoted bond-forming reactions and identify directions for future research according to the different photocatalysts/metal/redox catalysts involved.Notably,this review is not a comprehensive description of reported literature but aim to highlight and illustrate key concepts,strategies,reaction model,reaction conditions and mechanisms.展开更多
Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed thr...Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed through host-vip interactions between a piperazine derivative(PPE-BPI)with aggregationinduced emission(AIE)and cucurbit[7]uril(CB[7])in water to serve as ideal energy donors.To achieve multi-step sequential energy transfer,we employ three distinct fluorescent dyes Eosin B(EsB),Sulforhodamine 101(SR101),and Cyanine 5(Cy5)as energy acceptors.The PPE-PBI-2CB[7]+EsB+SR101+Cy5 system demonstrates a highly efficient three-step sequential energy transfer mechanism,starting with PPEPBI-2CB[7]and transferring energy successively to EsB,SR101,and finally to Cy5,with remarkable energy transfer efficiencies.More interestingly,with the progressive transfer of energy in the multi-step energy transfer system,the generation efficiency of superoxide anion radical(O_(2)•-)increased gradually,which can be used as photocatalysts for selectively photooxidation of N-phenyltetrahydroisoquinoline in an aqueous medium with a high yield of 86%after irradiation for 18 h.This study offers a valuable investigation into the simulation of multi-step energy transfer processes and transformations in the natural world,paving the way for further research in the field.展开更多
Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy funct...Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.展开更多
Photocatalysis(PC)and photoelectrocatalysis(PEC)represent promising and efficient avenues for harnessing solar energy to produce sustainable clean energy products and environmental remediation.Yet the current reaction...Photocatalysis(PC)and photoelectrocatalysis(PEC)represent promising and efficient avenues for harnessing solar energy to produce sustainable clean energy products and environmental remediation.Yet the current reaction efficiencies remain inadequate,limiting their efficiencies for practice.Despite the growing interest in photo thermal-driven PC/PEC systems,there is no comprehensive review that systematically summarises the role of the photothermal effect in bridging the gap between PC and PEC efficiencies.This review initially introduces the fundamental principles of PC and PEC,alongside the primary photothermal materials and relevant conversion mechanisms.Subsequently,the key influences of photothermal effects on PC and PEC performance(e.g.,light absorption,charge separation and transport,and surface reactions)and optimization strategies are discussed.In addition,the latest advancements in solar photothermal conversion are discussed,mainly focused on the widely application of different types of photothermal drive PC and PEC applications,such as PC and PEC oxygen evolution reaction(OER),hydrogen evolution reaction(HER),CO_(2)reduction reaction(CO_(2)RR),pollutant degradation,and sterilization,serving to illustrate the widespread applicability of the photothermal conversion.Finally,the development prospects and challenges of photothermal-assisted PC and PEC are discussed from the perspective of basic research and practical application.This work provides a timely and systematic framework to guide the rational design of photothermal-enhanced PC/PEC systems for sustainable energy and environmental applications.展开更多
Crystal defects and morphological modifications are popular strategies to enhance the catalytic activity of heterogeneous semiconductor photocatalysts.Despite defect engineering and morphology control show their succe...Crystal defects and morphological modifications are popular strategies to enhance the catalytic activity of heterogeneous semiconductor photocatalysts.Despite defect engineering and morphology control show their successful applications in ZnO,the effects of curved surface modifications on the photocatalytic performance of ZnO and their interplay with the defect formation remain unclear.To resolve this puzzle,we systemically investigate the joint effects of curvature and defect formation on the electronic structure,optoelectronic properties,and photocatalytic performance of ZnO slabs using first-principles calculations.We find that curvature deformation effectively narrows the electronic bandgap by up to 1.6 eV and shifts the p-/d-band centers,thereby enhancing light absorption in the visible and near-ultraviolet regions.Besides,curvature deformation stimulates self-polarization,facilitating the separation of photogenerated electrons and holes.Also,curvature deformation promotes the formation of defects by reducing defect formation energy(by up to 1.0 eV),thus creating abundant reaction sites for photocatalysis.Intriguingly,the synergistic interaction between curvature and defect deformation further strengthens the self-polarization,narrows the electronic bandgaps,adjusts the p-/d-band centers to improve the optoelectronic properties,and influences the dissociation and free energy barriers of intermediates.Consequently,our findings reveal that this synergy substantially enhances the photocatalytic performance of ZnO slabs,providing deeper insights into the role of defect engineering and morphology control on photocatalysis.展开更多
Covalent organic frameworks(COFs)based photocatalysts utilizing infrared light remains unexplored due to the limitation of electronic absorption.Herein,two novel two-dimensional(2D)polyimide-linked phthalocyanine COFs...Covalent organic frameworks(COFs)based photocatalysts utilizing infrared light remains unexplored due to the limitation of electronic absorption.Herein,two novel two-dimensional(2D)polyimide-linked phthalocyanine COFs,namely MPc-DPA-COFs(M=Zn/Cu),were prepared from the imidization reaction of metal tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato(M(TAPc))with 9,10-diphenyl anthracene(DPA).Both COFs possess highly crystalline eclipsed AA stacking structure with neighboring layer distance of 0.33 nm on the basis of powder X-ray diffraction analysis and high-resolution transmission electron microscopy.Effective π–π interaction between phthalocyanine chromophores in neighboring layers of 2D COFs leads to significant bathochromic-shift of narrow Q band from 697 nm for M(TAPc)to the infrared light absorption range of 760–1000 nm for MPc-DPA-COFs according to solid UV-vis diffuse reflectance spectra.This endows them in particular ZnPc-DPA-COF with excellent reactive oxygen species of•O_(2)^(–)and 1O_(2) generation activity under infrared light radiation(λ>760 nm)based on the electron spin resonance spectroscopy measurement,in turn resulting in the excellent photocatalytic capacity towards oxidation of sulfides under infrared light radiation.Corresponding quenching experiments reveal the contribution of both•O_(2)^(–)and 1O_(2) to the oxidation of sulfides,but the former•O_(2)^(–)species plays a leading role in this photocatalytic process.The present result not only provides a new efficient infrared light photocatalyst but also unveils the good potentials of phthalocyanine-based COFs in photocatalysis.展开更多
The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of me...The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of methanol at atmospheric pressure remains challenging owing to the competing reverse water-gas shift(RWGS)reaction.Herein,we present a novel approach for the synthesis of CH_(3)OH via photocatalytic CO_(2) hydrogenation using a catalyst featuring highly dispersed Au nanoparticles loaded on oxygen vacancy(OV)-rich molybdenum dioxide(MoO_(2)),resulting in a remarkable selectivity of 43.78%.The active sites in the Au/MoO_(2) catalyst are high-density Au-oxygen vacancies,which synergistically promote the tandem methanol synthesis via an initial RWGS reaction and subsequent CO hydrogenation.This work provides comprehensive insights into the design of metal-vacancy synergistic sites for the highly selective photocatalytic hydrogenation of CO_(2) to CH_(3)OH.展开更多
Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photo...Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photocatalyst was designed.Abundant active radicals produced by BBT under visible light irradiation and ultrasonic vibration were used to activate PMS,thereby achieving rapid degradation of high concentration pollutants.With the introduction of BCZT,the catalyst has a strong internal electric field and three-dimensional lamellar structure,which promotes the separation and transfer of electrons and holes.It is worth noting that under optimal reaction conditions,the degradation rate of ARB reached 93%by BBT15 within 10 min.The catalytic experiment combined with the piezoelectric performance test results revealed the key role of piezoelectric photocatalytic reaction in PMS activation.This provides an important prospect for PMS to effectively deal with the degradation of high concentrations of organic pollutants.展开更多
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and...Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.展开更多
Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[1...Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[10]uril-based single-layer 2D supramolecular-organic-frameworks(Q[10]-SOFs)in water.Importantly,the 2D Q[10]-SOFs can further serve as light harvesting antenna,achieving fast energy transfer to the embedded redox-active TSA upon photoexcitation,resulting in efficient visible light-driven selective oxidation of benzyl alcohols into the corresponding aldehydes in high yield at room temperature.Further studies revealed that the integrated of 2D Q[10]-SOFs and TSA played a key role in the catalytic process,due to the presence of a novel stepwise electron transfer route in the single-layer hybrid 2D structures.展开更多
Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the forma...Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the formation of oxygen vacancies(OVs)in the photocatalyst.OVs can adsorb more dissolved oxygen to promote the formation rate of·O^(-)_(2).Moreover,the interaction between Ce-Bi_(2)O_(3)and AgI results in the formation of Z-scheme heterojunctions,which can broaden the light absorption region,facilitate photogenerated carrier separation and transfer and enhance the ability to produce more active oxygen species(ROS).The morphology,crystal,element distribution and photo-electric chemical properties of the Ce-Bi_(2)O_(3)/AgI were analyzed,and the result shows that the optimal ratio of Ce-Bi_(2)O_(3)/AgI photocatalyst achieves a removal rate of 88.63%(180 min)of tetracycline(TC)(20 mg/L)and 100%(120 min)of methyl orange(MO)(20 mg/L).This work clarified the photocatalytic degradation mechanism,providing a promising avenue for developing photocatalytic composites by rare earth metal doping in environme ntal remediation applications.展开更多
Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of pho...Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.展开更多
This work reports a soft chemistry approach for the synthesis of magnesium oxide nanoparticles(MgO)incorporated in a polyaniline(PANI)matrix to give PANI/MgO nanocomposite.Using spin coating method,three different per...This work reports a soft chemistry approach for the synthesis of magnesium oxide nanoparticles(MgO)incorporated in a polyaniline(PANI)matrix to give PANI/MgO nanocomposite.Using spin coating method,three different percentages of MgO/PVC(1,2,and 3%in wt.%)were deposited on glass substrates.These films of PANI/MgO nanocomposite were characterized by X-ray diffraction(XRD),atomic force microscopy(AFM),and UV-visible spectroscopy.The results of the XRD pattern revealed the embedding of MgO nanoparticles in the PANI matrix with cubic phase,with the average size of nanoparticles varying from 35.12 to 59.55 nm.The AFM images displayed a significant change in the morphology of the PANI/MgO NPs composite films as MgO concentration was increased.The optical transmittance analysis revealed that at very low concentrations of MgO in PANI/MgO nanocomposite films,there is a high transparency,reaching close to 90%.However,this transmittance decreases significantly as the concentration of MgO increases.The photocatalytic activity of the nanocomposite film was then evaluated for the degradation of methylene blue(MB)dye under UV light irradiation.The results indicated a strong potential for PANI/MgO nanocomposite films in effectively degrading MB,supported by a proposed mechanism for the photocatalytic reaction.Compared with other composites such as PVC/MgO,PANI/MgO nanocomposite presented better MB degradation efficiency.展开更多
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti...Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.展开更多
Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) wi...Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.展开更多
Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or u...Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or unpaired electrons.Currently,commercial methane conversion is usually carried out in harsh conditions with enormous energy input.Photocatalytic partial oxidation of methane to liquid oxygenates(PPOMO)is a future-oriented technology towards realizing high efficiency and high selectivity under mild conditions.The selection of oxidant is crucial to the PPOMO performance.Hence,attentions are paid to the research progress of PPOMO with various oxidants(O_(2),H_(2)O,H_(2)O_(2)and other oxidants).Moreover,the activation of the selected oxidants is also highly emphasized.Meanwhile,we summarized the methane activation mechanisms focusing on the C-H bond that was broken mainly by·OH radical,O-specie or photogenerated hole(h+).Finally,the challenges and prospects in this subject are briefly discussed.展开更多
In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properti...In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properties, we used it as an energy donor to construct a sequential artificial light-harvesting system(LHS) by employing the energy-matching dyes eosin Y disodium salt(EY) and sulforhodamine101(SR101), which could regulate the white light emission(Commission Internationale de l'Eclairage(CIE) coordinate:(0.30, 0.31)) with the energy transfer efficiency(ΦET) of 53.9% and 20.0%. Moreover, a single-step artificial LHS with white light emission(0.32, 0.28) can be constructed directly using CDs and dye solvent 43(SR) with ΦETand antenna effect(AE) of 48.8% and 6.5, respectively. More importantly,CDs-based artificial LHSs were firstly used in photocatalytic of α-bromoacetophenone, with a yield of90%. This work not only provides a new strategy for constructing CDs-based LHSs, but also opens up a new application for further applying the energy harvested in CDs-based LHSs to the field of the aqueous solution photocatalysis.展开更多
Metal-organic frameworks(MOFs)are well-documented for visible light photocatalysis because of their tailorable structures and tunable absorptions through organic linkers.By employing a highly conjugated linker,4,4'...Metal-organic frameworks(MOFs)are well-documented for visible light photocatalysis because of their tailorable structures and tunable absorptions through organic linkers.By employing a highly conjugated linker,4,4',4'',4'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoic acid,the optical absorption of the MOF NU-1100 is effectively tuned to visible light below 600 nm region.Under green light irradiation,NU-1100 triggers charge separation and modulates electron transfer from the linkers to the Zr_(6)O_(4)(OH)_(4)^(12+)clusters,driving the oxidation of sulfides to sulfoxides.Notably,adding a redox mediator radically expedites the oxidation of sulfides by NU-1100 photocatalysis,TEMPO(2,2,6,6-tetramethylpiperidine-N-oxyl)and 4-carboxy-TEMPO.At least 2.7 and 5.2 times of conversions of phenyl methyl sulfide are achieved by NU-1100 photocatalysis with TEMPO and 4-carboxy-TEMPO,respectively.A series of characterizations illustrate that 4-carboxy-TEMPO is adsorbed onto the exterior surface of Zr_(6)O_(4)(OH)_(4)^(12+)clusters of NU-1100 to mediate hole transfer and achieve higher charge transfer efficiency.Mechanistic studies indicate that superoxide is the essential reactive oxygen species and that the oxidation of sulfides is driven by an electron transfer pathway.This study demonstrates the integration of redox mediators with MOFs can drive more efficient visible light photocatalytic reactions.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
基金supported by Liaoning Revitalization Talents Program(No.XLYC1907173)the Science and Technology General Project of Liaoning Provincial Education Department(No.LJKMZ20221835)the National Natural Science Foundation of China(Nos.22006073 and 22205027).
文摘The mass production and widespread use of Pharmaceuticals and Personal Care Products(PPCPs)have posed a serious threat to the water environment and public health.In this work,a green metal-based Metal Organic Framework(MOF)Bi-NH_(2)-BDC was prepared and characterized,and the adsorption characteristics of Bi-NH_(2)-BDCwere investigated with typical PPCPs-diclofenac sodium(DCF).It was found that DCF mainly covered the adsorbent surface as a single molecular layer,the adsorption reaction was a spontaneous,entropyincreasing exothermic process and the adsorption mechanisms between Bi-NH_(2)-BDC and DCF were hydrogen bonding,π-πinteractions and electrostatic interactions.In addition,Bi-NH_(2)-BDC also had considerable photocatalytic properties,and its application in adsor-bent desorption treatment effectively solved the problem of secondary pollution,achieving a green and sustainable adsorption desorption cycle.
文摘Semi-heterogeneous photocatalysis has emerged as a powerful and productive platform in organic chemistry,which provides mild and eco-friendly conditions for a diverse range of bond-forming reactions.The synergy of homogeneous catalysts and heterogeneous catalysts inherits their main advantages,such as higher activities,easy separation and superior recyclability.In this review,we summarize the recent advances in recyclable semi-heterogenous protocols for the light promoted bond-forming reactions and identify directions for future research according to the different photocatalysts/metal/redox catalysts involved.Notably,this review is not a comprehensive description of reported literature but aim to highlight and illustrate key concepts,strategies,reaction model,reaction conditions and mechanisms.
基金the National Natural Science Foundation of China(No.52205210)the Natural Science Foundation of Shandong Province(Nos.ZR2020MB018,ZR2022QE033 and ZR2021QB049).
文摘Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed through host-vip interactions between a piperazine derivative(PPE-BPI)with aggregationinduced emission(AIE)and cucurbit[7]uril(CB[7])in water to serve as ideal energy donors.To achieve multi-step sequential energy transfer,we employ three distinct fluorescent dyes Eosin B(EsB),Sulforhodamine 101(SR101),and Cyanine 5(Cy5)as energy acceptors.The PPE-PBI-2CB[7]+EsB+SR101+Cy5 system demonstrates a highly efficient three-step sequential energy transfer mechanism,starting with PPEPBI-2CB[7]and transferring energy successively to EsB,SR101,and finally to Cy5,with remarkable energy transfer efficiencies.More interestingly,with the progressive transfer of energy in the multi-step energy transfer system,the generation efficiency of superoxide anion radical(O_(2)•-)increased gradually,which can be used as photocatalysts for selectively photooxidation of N-phenyltetrahydroisoquinoline in an aqueous medium with a high yield of 86%after irradiation for 18 h.This study offers a valuable investigation into the simulation of multi-step energy transfer processes and transformations in the natural world,paving the way for further research in the field.
基金Sponsorship Program by CAST(2023QNRC001)University-Industry Collaborative Education Program(220901115200913,220901115201954)+2 种基金Hunan Provincial Natural Science Foundation of China(2022JJ40007)Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)3047)the National Natural Science Foundation of China(32201491)。
文摘Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.
基金partly supported by the National Natural Science Foundation of China(21978276)。
文摘Photocatalysis(PC)and photoelectrocatalysis(PEC)represent promising and efficient avenues for harnessing solar energy to produce sustainable clean energy products and environmental remediation.Yet the current reaction efficiencies remain inadequate,limiting their efficiencies for practice.Despite the growing interest in photo thermal-driven PC/PEC systems,there is no comprehensive review that systematically summarises the role of the photothermal effect in bridging the gap between PC and PEC efficiencies.This review initially introduces the fundamental principles of PC and PEC,alongside the primary photothermal materials and relevant conversion mechanisms.Subsequently,the key influences of photothermal effects on PC and PEC performance(e.g.,light absorption,charge separation and transport,and surface reactions)and optimization strategies are discussed.In addition,the latest advancements in solar photothermal conversion are discussed,mainly focused on the widely application of different types of photothermal drive PC and PEC applications,such as PC and PEC oxygen evolution reaction(OER),hydrogen evolution reaction(HER),CO_(2)reduction reaction(CO_(2)RR),pollutant degradation,and sterilization,serving to illustrate the widespread applicability of the photothermal conversion.Finally,the development prospects and challenges of photothermal-assisted PC and PEC are discussed from the perspective of basic research and practical application.This work provides a timely and systematic framework to guide the rational design of photothermal-enhanced PC/PEC systems for sustainable energy and environmental applications.
基金supported by the National Key R&D Program of China(No.2021YFA1502300)the National Natural Science Foundation of China(Nos.22103012,22173105)+2 种基金the Natural Science Foundation of Fujian Province(Nos.2024J01456,2024J01191)the Selfdeployment Project Research Program of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-GH10)the CAS Youth Interdisciplinary Team.
文摘Crystal defects and morphological modifications are popular strategies to enhance the catalytic activity of heterogeneous semiconductor photocatalysts.Despite defect engineering and morphology control show their successful applications in ZnO,the effects of curved surface modifications on the photocatalytic performance of ZnO and their interplay with the defect formation remain unclear.To resolve this puzzle,we systemically investigate the joint effects of curvature and defect formation on the electronic structure,optoelectronic properties,and photocatalytic performance of ZnO slabs using first-principles calculations.We find that curvature deformation effectively narrows the electronic bandgap by up to 1.6 eV and shifts the p-/d-band centers,thereby enhancing light absorption in the visible and near-ultraviolet regions.Besides,curvature deformation stimulates self-polarization,facilitating the separation of photogenerated electrons and holes.Also,curvature deformation promotes the formation of defects by reducing defect formation energy(by up to 1.0 eV),thus creating abundant reaction sites for photocatalysis.Intriguingly,the synergistic interaction between curvature and defect deformation further strengthens the self-polarization,narrows the electronic bandgaps,adjusts the p-/d-band centers to improve the optoelectronic properties,and influences the dissociation and free energy barriers of intermediates.Consequently,our findings reveal that this synergy substantially enhances the photocatalytic performance of ZnO slabs,providing deeper insights into the role of defect engineering and morphology control on photocatalysis.
文摘Covalent organic frameworks(COFs)based photocatalysts utilizing infrared light remains unexplored due to the limitation of electronic absorption.Herein,two novel two-dimensional(2D)polyimide-linked phthalocyanine COFs,namely MPc-DPA-COFs(M=Zn/Cu),were prepared from the imidization reaction of metal tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato(M(TAPc))with 9,10-diphenyl anthracene(DPA).Both COFs possess highly crystalline eclipsed AA stacking structure with neighboring layer distance of 0.33 nm on the basis of powder X-ray diffraction analysis and high-resolution transmission electron microscopy.Effective π–π interaction between phthalocyanine chromophores in neighboring layers of 2D COFs leads to significant bathochromic-shift of narrow Q band from 697 nm for M(TAPc)to the infrared light absorption range of 760–1000 nm for MPc-DPA-COFs according to solid UV-vis diffuse reflectance spectra.This endows them in particular ZnPc-DPA-COF with excellent reactive oxygen species of•O_(2)^(–)and 1O_(2) generation activity under infrared light radiation(λ>760 nm)based on the electron spin resonance spectroscopy measurement,in turn resulting in the excellent photocatalytic capacity towards oxidation of sulfides under infrared light radiation.Corresponding quenching experiments reveal the contribution of both•O_(2)^(–)and 1O_(2) to the oxidation of sulfides,but the former•O_(2)^(–)species plays a leading role in this photocatalytic process.The present result not only provides a new efficient infrared light photocatalyst but also unveils the good potentials of phthalocyanine-based COFs in photocatalysis.
文摘The production of renewable methanol(CH_(3)OH)via the photocatalytic hydrogenation of CO_(2) is an ideal method to ameliorate energy shortages and mitigate CO_(2) emissions:however,the highly selective synthesis of methanol at atmospheric pressure remains challenging owing to the competing reverse water-gas shift(RWGS)reaction.Herein,we present a novel approach for the synthesis of CH_(3)OH via photocatalytic CO_(2) hydrogenation using a catalyst featuring highly dispersed Au nanoparticles loaded on oxygen vacancy(OV)-rich molybdenum dioxide(MoO_(2)),resulting in a remarkable selectivity of 43.78%.The active sites in the Au/MoO_(2) catalyst are high-density Au-oxygen vacancies,which synergistically promote the tandem methanol synthesis via an initial RWGS reaction and subsequent CO hydrogenation.This work provides comprehensive insights into the design of metal-vacancy synergistic sites for the highly selective photocatalytic hydrogenation of CO_(2) to CH_(3)OH.
基金financially supported by the National Natural Science Foundation of China(No.51302061)Natural Science Foundation of Hebei Province(No.E2020201021 and E2023201019)+4 种基金Industry-University-Research Cooperation Major Projects of Shijiazhuang(No.241130477A)Research Innovation Team of College of Chemistry and Environmental Science of Hebei University(No.hxkytd2102)Industry-University-research Cooperation Project of Colleges and Universities in Hebei Province(No.CXZX2025016)Hebei Province Innovation Capability Enhancement Plan Project(No.22567620H)Bintuan Science and Technology Program(Nos.2020DB002 and 2022DB009)。
文摘Peroxymonosulfate(PMS)is commonly used in advanced oxidation processes to degrade organic pollutants in wastewater.In this work,to obtain better PMS activation efficiency,Bi_(4)O_(5)Br_(2)/BCZT(BBT)piezoelectric photocatalyst was designed.Abundant active radicals produced by BBT under visible light irradiation and ultrasonic vibration were used to activate PMS,thereby achieving rapid degradation of high concentration pollutants.With the introduction of BCZT,the catalyst has a strong internal electric field and three-dimensional lamellar structure,which promotes the separation and transfer of electrons and holes.It is worth noting that under optimal reaction conditions,the degradation rate of ARB reached 93%by BBT15 within 10 min.The catalytic experiment combined with the piezoelectric performance test results revealed the key role of piezoelectric photocatalytic reaction in PMS activation.This provides an important prospect for PMS to effectively deal with the degradation of high concentrations of organic pollutants.
文摘Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.
基金supported by the National Natural Science Foundation of China(No.22271090)。
文摘Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[10]uril-based single-layer 2D supramolecular-organic-frameworks(Q[10]-SOFs)in water.Importantly,the 2D Q[10]-SOFs can further serve as light harvesting antenna,achieving fast energy transfer to the embedded redox-active TSA upon photoexcitation,resulting in efficient visible light-driven selective oxidation of benzyl alcohols into the corresponding aldehydes in high yield at room temperature.Further studies revealed that the integrated of 2D Q[10]-SOFs and TSA played a key role in the catalytic process,due to the presence of a novel stepwise electron transfer route in the single-layer hybrid 2D structures.
基金Project supported by the National Natural Science Foundation of China(22106074)Tianjin Science and Technology Program(23YDTPJC00540,22YJDSS00060)。
文摘Ce-β-Bi_(2)O_(3)/AgI was prepared using solvothermal calcination and in-situ deposition methods.The introduction of Ce can inhibit the conversion of Bi_(2)O_(3)fromβtoαphase at high temperatures,promoting the formation of oxygen vacancies(OVs)in the photocatalyst.OVs can adsorb more dissolved oxygen to promote the formation rate of·O^(-)_(2).Moreover,the interaction between Ce-Bi_(2)O_(3)and AgI results in the formation of Z-scheme heterojunctions,which can broaden the light absorption region,facilitate photogenerated carrier separation and transfer and enhance the ability to produce more active oxygen species(ROS).The morphology,crystal,element distribution and photo-electric chemical properties of the Ce-Bi_(2)O_(3)/AgI were analyzed,and the result shows that the optimal ratio of Ce-Bi_(2)O_(3)/AgI photocatalyst achieves a removal rate of 88.63%(180 min)of tetracycline(TC)(20 mg/L)and 100%(120 min)of methyl orange(MO)(20 mg/L).This work clarified the photocatalytic degradation mechanism,providing a promising avenue for developing photocatalytic composites by rare earth metal doping in environme ntal remediation applications.
基金financially supported by the National Natural Science Foundation of China (No.52071146)Guangdong Provincial Natural Science Foundation (No.2023A1515010989)the Science and Technology Projects in Guangzhou (No.202201000008)。
文摘Water purification systems based on transition metal dichalcogenides face significant challenges,including lack of reactivity under dark conditions,scarcity of catalytically active sites,and rapid recombination of photogenerated charge carriers.Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult.In this study,we present a novel approach combining molybdenum(Mo) monoatomic doping and size engineering to produce a series of Mo-ReS_(2) quantum dots(MR QDs) with controllable dimensions.High-resolution structural characterization,first-principle calculations,and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry,thereby improving the piezoelectric properties.The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency,leading to optimized photocatalytic performance.Additionally,the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals,substantially boosting photo-sterilization efficiency.Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min.Furthermore,we developed a self-purification system simulating water drainage,utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs,achieving piezoelectric synergistic photodegradation.This innovative approach provides a more environmentally friendly and economical method for water self-purification,paving the way for advanced water treatment technologies.
文摘This work reports a soft chemistry approach for the synthesis of magnesium oxide nanoparticles(MgO)incorporated in a polyaniline(PANI)matrix to give PANI/MgO nanocomposite.Using spin coating method,three different percentages of MgO/PVC(1,2,and 3%in wt.%)were deposited on glass substrates.These films of PANI/MgO nanocomposite were characterized by X-ray diffraction(XRD),atomic force microscopy(AFM),and UV-visible spectroscopy.The results of the XRD pattern revealed the embedding of MgO nanoparticles in the PANI matrix with cubic phase,with the average size of nanoparticles varying from 35.12 to 59.55 nm.The AFM images displayed a significant change in the morphology of the PANI/MgO NPs composite films as MgO concentration was increased.The optical transmittance analysis revealed that at very low concentrations of MgO in PANI/MgO nanocomposite films,there is a high transparency,reaching close to 90%.However,this transmittance decreases significantly as the concentration of MgO increases.The photocatalytic activity of the nanocomposite film was then evaluated for the degradation of methylene blue(MB)dye under UV light irradiation.The results indicated a strong potential for PANI/MgO nanocomposite films in effectively degrading MB,supported by a proposed mechanism for the photocatalytic reaction.Compared with other composites such as PVC/MgO,PANI/MgO nanocomposite presented better MB degradation efficiency.
基金supported by the National Natural Science Foundation of China(21875118,22111530112)the support from the Smart Sensing Interdisciplinary Science Center,Nankai University。
文摘Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.
基金financially supported by the National Natural Science Foundation of China (No.52300206)the Natural Science Foundation of Jiangsu Province (No.BK20230705)+3 种基金the Industry-University Research Cooperation Project of Jiangsu Province,China (No.BY20221227)Natural Science Foundation of Jiangsu Higher Education Institutions of China (No.22KJB610014)the Talent-Recruiting Program of Nanjing Institute of Technology (No.YKJ202124)the Open Fund of Advanced Industrial Technology Research Institute,Nanjing Institute of Technology (No. XJY202110)。
文摘Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.
基金the National Key R&D Program of China(No.2021YFA1500800)National Natural Science Foundation of China(No.22072106).
文摘Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or unpaired electrons.Currently,commercial methane conversion is usually carried out in harsh conditions with enormous energy input.Photocatalytic partial oxidation of methane to liquid oxygenates(PPOMO)is a future-oriented technology towards realizing high efficiency and high selectivity under mild conditions.The selection of oxidant is crucial to the PPOMO performance.Hence,attentions are paid to the research progress of PPOMO with various oxidants(O_(2),H_(2)O,H_(2)O_(2)and other oxidants).Moreover,the activation of the selected oxidants is also highly emphasized.Meanwhile,we summarized the methane activation mechanisms focusing on the C-H bond that was broken mainly by·OH radical,O-specie or photogenerated hole(h+).Finally,the challenges and prospects in this subject are briefly discussed.
基金the financial support from the National Natural Science Foundation of China (Nos.52205210 and 22002075)the Natural Science Foundation of Shandong Province (Nos.ZR2020MB018 and ZR2022QE033)。
文摘In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properties, we used it as an energy donor to construct a sequential artificial light-harvesting system(LHS) by employing the energy-matching dyes eosin Y disodium salt(EY) and sulforhodamine101(SR101), which could regulate the white light emission(Commission Internationale de l'Eclairage(CIE) coordinate:(0.30, 0.31)) with the energy transfer efficiency(ΦET) of 53.9% and 20.0%. Moreover, a single-step artificial LHS with white light emission(0.32, 0.28) can be constructed directly using CDs and dye solvent 43(SR) with ΦETand antenna effect(AE) of 48.8% and 6.5, respectively. More importantly,CDs-based artificial LHSs were firstly used in photocatalytic of α-bromoacetophenone, with a yield of90%. This work not only provides a new strategy for constructing CDs-based LHSs, but also opens up a new application for further applying the energy harvested in CDs-based LHSs to the field of the aqueous solution photocatalysis.
文摘Metal-organic frameworks(MOFs)are well-documented for visible light photocatalysis because of their tailorable structures and tunable absorptions through organic linkers.By employing a highly conjugated linker,4,4',4'',4'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoic acid,the optical absorption of the MOF NU-1100 is effectively tuned to visible light below 600 nm region.Under green light irradiation,NU-1100 triggers charge separation and modulates electron transfer from the linkers to the Zr_(6)O_(4)(OH)_(4)^(12+)clusters,driving the oxidation of sulfides to sulfoxides.Notably,adding a redox mediator radically expedites the oxidation of sulfides by NU-1100 photocatalysis,TEMPO(2,2,6,6-tetramethylpiperidine-N-oxyl)and 4-carboxy-TEMPO.At least 2.7 and 5.2 times of conversions of phenyl methyl sulfide are achieved by NU-1100 photocatalysis with TEMPO and 4-carboxy-TEMPO,respectively.A series of characterizations illustrate that 4-carboxy-TEMPO is adsorbed onto the exterior surface of Zr_(6)O_(4)(OH)_(4)^(12+)clusters of NU-1100 to mediate hole transfer and achieve higher charge transfer efficiency.Mechanistic studies indicate that superoxide is the essential reactive oxygen species and that the oxidation of sulfides is driven by an electron transfer pathway.This study demonstrates the integration of redox mediators with MOFs can drive more efficient visible light photocatalytic reactions.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.