The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation...The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation energy storage systems.However,severe electrode volume changes and sluggish redox kinetics are the critical problems for lithium/potassium ion batteries(LIBs/PIBs)towards large-scale applications.Herein,we prepare a novel anode material,which consists of reduced graphene oxide wrapping one-dimensional(1D)N-doped porous carbon nanotube with cobalt phosphoselenide(CoPSe)nanoparticles embedded inside them(r GO@Co PSe/NC).Benefited from the dual carbon decorations and ultrafine nanoparticles structure,it achieves a reversible capacity of 245 mAh/g at 5 A/g after 2000 cycles for LIBs and 215 mAh/g at 1 A/g after 500 cycles for PIBs.The pseudocapacitance and GITT measurements are used to investigate the electrochemical kinetics of r GO@Co PSe/NC for LIBs.In addition,the lithium ion full cell also shows good electrochemical performance when paired with high capacity LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode.This work provides a feasible electrode design strategy for high-efficiency metal ion batteries based on multidimensional nanoarchitecture engineering and composition tailoring.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22204028)Young Talent Support Project of Guangzhou Association for Science and Technology(No.QT-2023-003)+3 种基金Guangdong Basic and Applied Basic Research Fund Project(No.2022A1515110451)Guangzhou University Graduate Student Innovation Ability Cultivation Funding Program(No.2022GDJC-M06)Science and Technology Projects in Guangzhou(Nos.202201010245,2023A03J0029)Double-Thousand Talents Plan of Jiangxi Province(No.jxsq2023102005)。
文摘The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation energy storage systems.However,severe electrode volume changes and sluggish redox kinetics are the critical problems for lithium/potassium ion batteries(LIBs/PIBs)towards large-scale applications.Herein,we prepare a novel anode material,which consists of reduced graphene oxide wrapping one-dimensional(1D)N-doped porous carbon nanotube with cobalt phosphoselenide(CoPSe)nanoparticles embedded inside them(r GO@Co PSe/NC).Benefited from the dual carbon decorations and ultrafine nanoparticles structure,it achieves a reversible capacity of 245 mAh/g at 5 A/g after 2000 cycles for LIBs and 215 mAh/g at 1 A/g after 500 cycles for PIBs.The pseudocapacitance and GITT measurements are used to investigate the electrochemical kinetics of r GO@Co PSe/NC for LIBs.In addition,the lithium ion full cell also shows good electrochemical performance when paired with high capacity LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode.This work provides a feasible electrode design strategy for high-efficiency metal ion batteries based on multidimensional nanoarchitecture engineering and composition tailoring.