Phosphorus(Pi)plays a crucial role in the growth and development of plants.Membrane lipid regulation is one of the main mechanisms underlying plant adaptation to Pi deficiency.Previously,the high tolerance to low-Pi s...Phosphorus(Pi)plays a crucial role in the growth and development of plants.Membrane lipid regulation is one of the main mechanisms underlying plant adaptation to Pi deficiency.Previously,the high tolerance to low-Pi stress was justified in an elite line,MSDZ 109,which was obtained from Malus mandshurica.To better understand the mechanism underlying high adaptation to low-Pi stress,currently,lipidomic and transcriptomic analysis,as well as CRISPR/Cas9 and MmGDPD1-overexpressing methodologies were comprehensively integrated into a strategy for elucidating the high tolerance to low-Pi stress.Totally,770 differential metabolites were identified from the roots between the low-Pi and stress-free,belonging to 21 sub-classes of lipid compounds.Fatty acids(FA)constituted the predominant lipid component,accounting for approximately 50%-60%of the total lipids,and triglycerides(TAG)ranked the second,comprising around 12%of the total,consecutively followed by phosphatidylcholine(PC)and diacylglycerol(DAG)with approximately 10%and 8%of the total,respectively.The synchronous transcriptomic analysis revealed a significant up-regulation of genes related to glycerophospholipid and glycerolipid metabolism,specifically those(e.g.,MmGDPD1,MmDGDG1,MmMGDG1,MmSQDG,etc.)involved in phospholipid and galactosyl synthesis in response to low-Pi stress.GUS fusing reporter assay showed that MmGDPD1 promoter induced GUS gene expression and demonstrated initiation activity.Based on expression analysis,a dual-luciferase reporter assay,as well as yeast one-hybrid(Y1H)identification,MmPHR1 was justified to bind with the MmGDPD1 promoter and positively regulate plant tolerance to low-Pi stress.To further elucidate the role of MmGDPD1,CRISPR/Cas9 and MmGDPD1-overexpressing vectors were successfully introduced into apple(‘Royal Gala')calli.Interestingly,the MmGDPD1-KO line calli exhibited the remarkable decreases in the contents of phosphodiesterase(PDE),activity,as well as the contents of total Pi,and Pi in comparison with those of the wild type.Conversely,MmGDPD1-OE ones demonstrated the significant elevation in Pi accumulations,further justifying its potential role in Pi remobilization in apple.Therefore,MmGDPD1 substantially involves elevating low-Pi tolerance via promoting Pi release in M.mandshurica.展开更多
Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. ...Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrifying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.展开更多
The hybrid method composed of clustering and predicting stages is proposed to predict the endpoint phos- phorus content of molten steel in BOF (Basic Oxygen Furnace). At the clustering stage, the weighted K-means is...The hybrid method composed of clustering and predicting stages is proposed to predict the endpoint phos- phorus content of molten steel in BOF (Basic Oxygen Furnace). At the clustering stage, the weighted K-means is performed to generate some clusters with homogeneous data. The weights of factors influencing the target are calcu- lated using EWM (Entropy Weight Method). At the predicting stage, one GMDH (Group Method of Data Handling) polynomial neural network is built for each cluster. And the predictive results from all the GMDH polynomial neural networks are integrated into a whole to be the result for the hybrid method. The hybrid method, GMDH polnomial neural network and BP neural network are employed for a comparison. The results show that the proposed hybrid method is effective in predicting the endpoint phosphorus content of molten steel in BOF. Furthermore, the hybrid method outperforms BP neural network and GMDH polynomial neural network.展开更多
A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to ...A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to produce clusters with homogeneous data. At the second predicting stage, each fuzzy neural network is carried out on each cluster and the results from all fuzzy neural networks are combined to be the final result of the hybrid method. The hybrid method and single fuzzy neural network are compared and the results show that the hybrid method outperforms single fuzzy neural network.展开更多
Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(P...Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.展开更多
Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover re...Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem.展开更多
The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environment...The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.展开更多
基金supported by grants from the National Guidance Foundation for Local Science and Technology Development of China(Grant No.2023-009)the Department of Science and Technology of Guizhou Province(Grant No.qiankehezhicheng-[2020]1Y025)。
文摘Phosphorus(Pi)plays a crucial role in the growth and development of plants.Membrane lipid regulation is one of the main mechanisms underlying plant adaptation to Pi deficiency.Previously,the high tolerance to low-Pi stress was justified in an elite line,MSDZ 109,which was obtained from Malus mandshurica.To better understand the mechanism underlying high adaptation to low-Pi stress,currently,lipidomic and transcriptomic analysis,as well as CRISPR/Cas9 and MmGDPD1-overexpressing methodologies were comprehensively integrated into a strategy for elucidating the high tolerance to low-Pi stress.Totally,770 differential metabolites were identified from the roots between the low-Pi and stress-free,belonging to 21 sub-classes of lipid compounds.Fatty acids(FA)constituted the predominant lipid component,accounting for approximately 50%-60%of the total lipids,and triglycerides(TAG)ranked the second,comprising around 12%of the total,consecutively followed by phosphatidylcholine(PC)and diacylglycerol(DAG)with approximately 10%and 8%of the total,respectively.The synchronous transcriptomic analysis revealed a significant up-regulation of genes related to glycerophospholipid and glycerolipid metabolism,specifically those(e.g.,MmGDPD1,MmDGDG1,MmMGDG1,MmSQDG,etc.)involved in phospholipid and galactosyl synthesis in response to low-Pi stress.GUS fusing reporter assay showed that MmGDPD1 promoter induced GUS gene expression and demonstrated initiation activity.Based on expression analysis,a dual-luciferase reporter assay,as well as yeast one-hybrid(Y1H)identification,MmPHR1 was justified to bind with the MmGDPD1 promoter and positively regulate plant tolerance to low-Pi stress.To further elucidate the role of MmGDPD1,CRISPR/Cas9 and MmGDPD1-overexpressing vectors were successfully introduced into apple(‘Royal Gala')calli.Interestingly,the MmGDPD1-KO line calli exhibited the remarkable decreases in the contents of phosphodiesterase(PDE),activity,as well as the contents of total Pi,and Pi in comparison with those of the wild type.Conversely,MmGDPD1-OE ones demonstrated the significant elevation in Pi accumulations,further justifying its potential role in Pi remobilization in apple.Therefore,MmGDPD1 substantially involves elevating low-Pi tolerance via promoting Pi release in M.mandshurica.
文摘Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrifying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.
基金Sponsored by National Key Technology Research and Development in 11th Five Years Plan of China(2006BAE03A07)Fundamental Research Funds for Central University of China(FRF-AS-09-006B)
文摘The hybrid method composed of clustering and predicting stages is proposed to predict the endpoint phos- phorus content of molten steel in BOF (Basic Oxygen Furnace). At the clustering stage, the weighted K-means is performed to generate some clusters with homogeneous data. The weights of factors influencing the target are calcu- lated using EWM (Entropy Weight Method). At the predicting stage, one GMDH (Group Method of Data Handling) polynomial neural network is built for each cluster. And the predictive results from all the GMDH polynomial neural networks are integrated into a whole to be the result for the hybrid method. The hybrid method, GMDH polnomial neural network and BP neural network are employed for a comparison. The results show that the proposed hybrid method is effective in predicting the endpoint phosphorus content of molten steel in BOF. Furthermore, the hybrid method outperforms BP neural network and GMDH polynomial neural network.
基金Item Sponsored by Beijing Higher Education Young Elite Teacher Project(YETP0382)2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science of China(Z121101002812005)
文摘A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to produce clusters with homogeneous data. At the second predicting stage, each fuzzy neural network is carried out on each cluster and the results from all fuzzy neural networks are combined to be the final result of the hybrid method. The hybrid method and single fuzzy neural network are compared and the results show that the hybrid method outperforms single fuzzy neural network.
基金supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the National Natural Science Foundation of China(32370272,31970273,and 31921001).
文摘Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
基金supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2021B0202030002)the Science and Technology Planning Project of Guangdong Province,China(No.2019B030301007)+2 种基金the Guangdong Provincial Special Project of Rural Revitalization Strategy,China(No.(2021)12)the Joint Team Project of Guangdong Laboratory for Lingnan Modern Agriculture,China(No.NT2021010)the Innovation Team Construction Project of Modern Agricultural Industry Technology Systems of Guangdong Province,China(No.2022KJ105).
文摘Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem.
基金supported by the National Natural Science Foundation of China(52100093,52270128,and 52261135627)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011734 and 2021B1515120068)+2 种基金the Municipal Science and Technology Innovation Council of the Shen-zhen Government(KCXFZ20211020163556020 and SGDX20230116092359002)the Research Grants Council(17210219)the Innovation and Technology Fund(ITS/242/20FP)of the Hong Kong SAR Government。
文摘The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.