Transition metal ions(Pb^(2+),Zn^(2+),Cd^(2+),Co^(2+),Mn^(2+),Cu^(2+),Ni^(2+),Hg^(2+),Ag^(+),Fe^(3+))in water are used to quench emission of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-phenylene-...Transition metal ions(Pb^(2+),Zn^(2+),Cd^(2+),Co^(2+),Mn^(2+),Cu^(2+),Ni^(2+),Hg^(2+),Ag^(+),Fe^(3+))in water are used to quench emission of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s(MD5)with aggregation-induced emission enhancement(AIEE)in water-acetonitrile(AN)mixture(80:20 by volume).Among all metal ions,Fe^(3+)exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe^(3+)is lower than 1×10^(-6) mol/L.The quenching efficiency of Hg^(2+)is lower than that of Fe^(3+)at the same concentration,though MD5 is used to detect Hg^(2+)efficiently,too.To other metal ions,low quenching efficiency has few relations with a wider concentration range.The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg^(2+)and Fe^(3+),which indicates a salt-induced Jaggregation.SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg^(2+)and Fe^(3+),which reduce the surface area of MD5 emission for further aggregation.The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.展开更多
基金This project was supported by the National Natural Science Foundation of China(No.20634020)the Basic Research Foundation of Beijing Institute of Technology(BIT-UBF-200504B4213,BIT-UBF-200504B4215).
文摘Transition metal ions(Pb^(2+),Zn^(2+),Cd^(2+),Co^(2+),Mn^(2+),Cu^(2+),Ni^(2+),Hg^(2+),Ag^(+),Fe^(3+))in water are used to quench emission of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s(MD5)with aggregation-induced emission enhancement(AIEE)in water-acetonitrile(AN)mixture(80:20 by volume).Among all metal ions,Fe^(3+)exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe^(3+)is lower than 1×10^(-6) mol/L.The quenching efficiency of Hg^(2+)is lower than that of Fe^(3+)at the same concentration,though MD5 is used to detect Hg^(2+)efficiently,too.To other metal ions,low quenching efficiency has few relations with a wider concentration range.The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg^(2+)and Fe^(3+),which indicates a salt-induced Jaggregation.SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg^(2+)and Fe^(3+),which reduce the surface area of MD5 emission for further aggregation.The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.