Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applica...Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.展开更多
Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herei...Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herein,at the atomic scale,the localized phonons of individual dislocations at a Si/Ge interface are measured via monochromated electron energy loss spectroscopy in a scanning transmission electron microscope.These modes are then correlated with the local microstructure,further revealing the dislocation effects on the local thermal transport properties.The dislocation causes a phonon redshift of several milli-electron-volts within about two to four nanometers of the core,where both the strain field and Ge segregation play roles.With the presence of dislocation,the local interfacial thermal conductance can be either enhanced or reduced,depending on the complex interaction and competition between lattice disorder(dislocation)and element disorder(heterointerface mixing and Ge-segregation)at the interface.These findings provide valuable insights to improve the thermal properties of thermoelectric generators and thermal management systems through proper defect engineering.展开更多
The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this stud...The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this study explores the generation of PAM during the transport of electrically driven polarons along a singlestranded helix structure.We demonstrate that the motion of a polaron under an applied electric field inherently induces a finite PAM,exhibiting drift-locked behavior between the PAM and the polaron.By analyzing the time evolution of PAM distribution at each site,we identify the observed PAM as a natural consequence of coherent superposition between lattice waves,in which the chiral structure selectively determines the direction of induced PAM.Furthermore,we examine the roles of two types of electron-phonon interactions and structural periodicity in modulating PAM.These findings highlight the potential of chiral molecules as platforms for PAM generation and offer new insights into developing phonon-spin-based devices for information processing and transmission.展开更多
We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the p...We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb.展开更多
Spin-phonon coupling is important in chromate spinel oxides ACr_(2)O_(4),but its role in LiFeCr_(4)O_(8)is not well understood.In this paper,we employ Raman scattering and first-principles phonon calculations to study...Spin-phonon coupling is important in chromate spinel oxides ACr_(2)O_(4),but its role in LiFeCr_(4)O_(8)is not well understood.In this paper,we employ Raman scattering and first-principles phonon calculations to study this material.Ten out of 13 Raman-active modes are well assigned.Notably,no phonon splitting is observed across the structural phase transition due to the remarkably small Grüneisen constants.This observation,in conjunction with the structural data,provides compelling evidence that the structural phase transition in LiFeCr_(4)O_(8)is primarily driven by the spin-driven Jahn-Teller effect.Interestingly,some Raman modes(at 207 cm^(-1),306 cm^(-1)and 462 cm^(-1))exhibit unusual linewidth behavior across the temperature range investigated.Furthermore,the Raman spectra in different phases show no magnetic field dependence.These results suggest that phonons couple with short-range spin correlations,offering insights into how spin and lattice degrees of freedom interact in frustrated systems.展开更多
In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC...In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.展开更多
Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investi...Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investigate the lattice dynamics of Cs_(2)AgInCl_(6)using first-principles calculations.By explicitly incorporating four-phonon scattering and wave-like phonon tunneling,we predict a k_(l)of 0.52 W·m^(-1)·K^(-1)with a remarkably weak temperature dependence(k_(l)∝T^(-0.31)),confirming the intrinsically glass-like ultralow k_(l)in Cs_(2)AgInCl_(6).Further analyses reveal that hierarchical chemical bonds,loosely bonded rattling atoms and a mixed crystalline-liquid state collectively induce strong anharmonicity manifested in flat phonon modes.These factors dominate the glass-like thermal transport component of k_(l).This work uncovers the underlying mechanisms governing the unusual thermal transport properties in lead-free HDPs and offers guiding principles for designing novel energy conversion technologies.展开更多
Time-reversal symmetry(TRS)breaking induced dissipationless topological phonon edge modes provide an unprecedented way to manipulate phonon transport.However,the effect of TRS breaking on the transport properties of b...Time-reversal symmetry(TRS)breaking induced dissipationless topological phonon edge modes provide an unprecedented way to manipulate phonon transport.However,the effect of TRS breaking on the transport properties of bulk phonon modes is still unclear.In this work,we assess the effect of local TRS-breaking domains on the transport properties of bulk phonon modes in a two-dimensional(2D)hexagonal phononic lattice model.The results show that bulk phonon modes can be strongly scattered by local TRS breaking owing to the shift of the local phonon band gap,which results in significant suppression of phonon transmission.Moreover,we show that the aperiodic distribution of local TRS-breaking domains can induce phonon Anderson localization,and the localization length can be effectively tuned by the strength of TRS breaking.Our study suggests that TRS breaking can not only be used to construct dissipationless topological phonon edge states,but also be used to block the transmission of bulk phonon modes by carefully controlling the size and distribution of TRS-breaking domains.Such results provide a highly alternative way for manipulating energy flux at the nanoscale.展开更多
Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic se...Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic sensors,and piezoelectric energy harvesters,typically operating under the assumption of an external elastic wave incidence.Recently,a novel approach that uses defective PnCs as ultrasonic actuators to generate amplified waves has emerged.However,the existing studies are limited to the generation of either longitudinal or bending waves,with no research addressing the concurrent generation of both.Hence,this paper proposes a straightforward methodology for the concurrent generation and amplification of both wave types utilizing defect modes at independent defect-band frequencies.Bimorph piezoelectric elements are attached to the defect,with each element connected to independent external voltage sources.By precisely adjusting the magnitude and temporal phase differences between the voltage sources,concurrently amplified wave generation is achieved.The paper highlights the advantages of the proposed analytical model.This model is both computationally time-efficient and accurate,in comparison with the COMSOL simulation results.For instance,in case studies,the analytical model reduces the computational time from one hour to mere seconds,while maintaining acceptable error rates of 1%in peak frequencies.This concurrent wave-generation methodology opens new avenues for applications in rotating machinery fault diagnosis,structural health monitoring,and medical imaging.展开更多
Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we inve...Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons(SPPs) of the graphene and localized surface phonon polaritons(LSPh P) of nanospheres. We exam nanospheres consisted of several different materials, including SiO_(2), Si C, Zn Se, Na Cl, ln Sb. Our results suggest that the LSPh P of Na Cl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for Na Cl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica(SiO_(2)) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for Na Cl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.展开更多
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus...The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.展开更多
This paper presents a locally resonant phononic crystal with excellent noise reduction in the low-frequency range as a soundproofing plate in mufflers.A locally resonant phononic crystal is established,and the bandgap...This paper presents a locally resonant phononic crystal with excellent noise reduction in the low-frequency range as a soundproofing plate in mufflers.A locally resonant phononic crystal is established,and the bandgap range of the phononic crystal is analyzed by using COMSOL software.Taking the partition plate in the muffler as the object,the acoustic-solid coupling is studied to analyze the sound insulation characteristics of the locally resonant phononic crystal.A phononic crystal plate-like structure is established to analyze its noise reduction performance in the muffler.The results indicate that the locally resonant phononic crystal exhibits favorable low-frequency sound insulation performance within a bandgap range below 200 Hz.At 160 Hz,the noise reduction is 15 dB higher than that of ordinary partition plates.As the number of layers of the phononic crystal plate increases,its noise reduction effect gradually enhances,while the magnitude of the noise reduction increment tends to diminish.At 160 Hz,the single-,double-and triple-layer plates achieve peak reductions of 47,53 and 57 dB,respectively.Compared with the double-layer phononic crystal plate,the composite of the locally resonant phononic crystal plate and the steel plate has an average noise reduction of 5 dB higher.Through research and analysis of the composite locally resonant phononic crystal plates,more feasible combined structures can be provided for future muffler structural design.展开更多
To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the disp...To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the dispersion curves of this phononic crystal model,and the results were compared with those from the finite element method to verify their accuracy.Subsequently,a parameter study explored the effects of the elastic foundation coeffi-cient and coverage ratio on the band gap.The results indicate that as the coverage ratio of the elastic foundation increases,the band gap significantly expands,reaching its maximum value at 100%coverage.Additionally,as the elastic foundation stiffness increases,the band gap gradually widens and converges toward fixed boundary conditions.The study also investigated the band gap of phononic crystal plates with defects,finding that the vibrational energy concentrates at the defect unit cell.Furthermore,the defect band frequency can be effectively modulated by adjusting the coefficient of the elastic foundation,providing a theoretical basis for achieving efficient energy conversion.展开更多
Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of m...Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.展开更多
The superior radiation tolerance of silicon-on-insulator(SOI)wafers makes them critical for next-generation integrated circuit and micro-electro-mechanical system electronics in space technology and nuclear energy,and...The superior radiation tolerance of silicon-on-insulator(SOI)wafers makes them critical for next-generation integrated circuit and micro-electro-mechanical system electronics in space technology and nuclear energy,and yet the inherently low thermal conductivity buried oxide layer severely impedes thermal management in SOI-based radio frequency/power devices.While diamond offers exceptional thermal conductivity to enhance heat dissipation,its significant thermomechanical mismatch with silicon poses major challenges to reliable hetero-integration.Here we demonstrate a novel silicon film-on-diamond(SOD)heterostructure using microtransfer printing(μTP)technology,with comparative analysis against surface activated bonded silicon-on-silicon carbide(SOC)and conventional SOI wafers.TheμTP-SOD samples exhibit near-zero residual stress(0.026 GPa)in the transferred Si layer and substantially reduced interfacial thermal resistance(ITR)compared to conventional SOI and SOC wafers.Integrated analysis of interfacial microstructures and molecular dynamics simulations reveals how interfacial structures and amorphous compositions govern the phonon thermal transport.Particularly,the amorphous SiO-SiC transition layer enhances phonon transmission at theμTP-SOD heterointerface to achieve a low ITR of 6.3+1.6/-1.5 m^(2)·K/GW.Finite element analysis verifies that these interfacial enhancements,combined with the diamond’s exceptional thermal conductivity,reduce the device junction-temperature rise by 66.7%relative to SOI devices at 15 W/mm output power.The low residual stress and reduced ITR ofμTP-SOD are expected to provide promising thermal management schemes for SOI-based electronics.展开更多
Phonon coherence can reflect electron‒phonon coupling information and has been proven to modulate electronic states and charge transport.The manipulation of phonon coherence through spacer cation engineering in organi...Phonon coherence can reflect electron‒phonon coupling information and has been proven to modulate electronic states and charge transport.The manipulation of phonon coherence through spacer cation engineering in organic‒inorganic hybrid perovskites(OIHPs)has been extensively demonstrated;however,the underlying structural origin remains elusive at the molecular level.Herein,we present molecular structure and temperature-dependent coherent phonon studies via a combination of sum frequency generation vibrational spectroscopy(SFG-VS)and transient absorption spectroscopy(TAS).The conformational order of spacer cations dictates the coherent phonon oscillations in 2D OIHPs.Our study further analyzes the static order and dynamic disorder in 2D perovskites.This work provides molecular-level insights into the role of spacer cations in tuning structural order and may provide valuable guidance for advancing emergent optoelecltronics development.展开更多
The interfacial thermal resistance(ITR)at material interfaces has emerged as a critical factor in the thermal management of micro/nanoelectronic devices and composite materials.Using non-equilibrium molecular dynamics...The interfacial thermal resistance(ITR)at material interfaces has emerged as a critical factor in the thermal management of micro/nanoelectronic devices and composite materials.Using non-equilibrium molecular dynamics simulations,we systematically investigate how simulation parameters affect the calculated ITR in Si/Ge heterojunctions.Our results demonstrate that the ITR decreases with increasing system length L_(sys)and thermal bath length L_(bath).We identify linear relationships between ITR and the inverse of both L_(sys)and L_(bath),enabling reliable extrapolation to infinite-system values.While the thermostat coupling constantτshows a negligible influence on ITR,excessively large values(τ>5 ps)compromise temperature control accuracy.Spectral analysis reveals that these size effects primarily originate from mid-to-low-frequency phonons(<6 THz),whose long mean free paths make their transport particularly sensitive to system dimensions.This work establishes fundamental guidelines for parameter selection in interfacial thermal transport simulations,while providing new insights into phonon-interface interactions.The findings offer valuable implications for thermal design in high-power devices and composite materials,where accurate ITR prediction is crucial for performance optimization.展开更多
Lead-free halide perovskites provide a promising solution for efficient thermoelectric materials due to their ultralow lattice thermal conductivity(κ_(L)).However,disadvantages such as the electrically resistive natu...Lead-free halide perovskites provide a promising solution for efficient thermoelectric materials due to their ultralow lattice thermal conductivity(κ_(L)).However,disadvantages such as the electrically resistive nature strongly affect their power factor.In this work,we introduced the Te-based halide perovskites thermoelectric material Cs_(2)TeI_(6),which is already known as a promising candidate for photovoltaic applications due to its moderate band gap.Our findings reveal that Cs_(2)TeI_(6)has an exceptionally ultralow κ_(L)at room temperature,reaching as low as 0.17 W·m^(-1)·K^(-1).We found that the four-phonon scattering processes play a dominant role in suppressing the thermal transport,leading to an approximate 50% reduction in its particle-like thermal conductivity κ_(p) at 300 K.The ultralow κ_(L)can be mainly attributed to the strong discrepancy in bonding strength,which induces large anharmonicity.The flat and dense phonon dispersions result in a strong phonon scattering rate,making it easy to generate wavelike phonon tunneling.After accounting for the wavelike thermal conductivity κ_(c),a nonstandard T^(-0.30)temperature dependence was observed.Benefiting from the ultralow κ_(L),n-type Cs_(2)TeI_(6)is predicted to achieve an extraordinary ZT of 2.26 at 700 K.This work highlights a pathway for searching high-performance and low-cost thermoelectrics based on lead-free halide perovskites.展开更多
We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge u...We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.展开更多
In this paper,the dispersion,attenuation,and bandgap characteristics of in-plane coupled Bloch waves in one-dimensional piezoelectric semiconductor(PSC)phononic crystals are investigated,emphasizing the influence of p...In this paper,the dispersion,attenuation,and bandgap characteristics of in-plane coupled Bloch waves in one-dimensional piezoelectric semiconductor(PSC)phononic crystals are investigated,emphasizing the influence of positive-negative(PN)junctions.Unlike piezoelectric phononic crystals,the coupled Bloch waves in PSC phononic crystals are attenuated due to their semiconductor properties,and thus the solution of Bloch waves becomes more complicated.The transfer matrix of the phononic crystal unit cell is obtained using the state transfer equation.By applying the Bloch theorem for periodic structures,the dispersion relation of the coupled Bloch waves is derived,and the dispersion,attenuation,and bandgap are obtained in the complex wave number domain.It is found that the influence of the PN junction cannot be neglected.Moreover,the effects of the PN junction under different apparent wave numbers and steady-state carrier concentrations are provided.This indicates the feasibility of adjusting the propagation characteristics of Bloch waves through the regulation of the PN heterojunction.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFA1600200)the National Natural Science Foundation of China(Grant Nos.U2032218 and 12111530283)。
文摘Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.
基金supported by the National Natural Science Foundation of China(Grant No.52125307)the National Key R&D Program of China(Grant No.2021YFB3501500)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herein,at the atomic scale,the localized phonons of individual dislocations at a Si/Ge interface are measured via monochromated electron energy loss spectroscopy in a scanning transmission electron microscope.These modes are then correlated with the local microstructure,further revealing the dislocation effects on the local thermal transport properties.The dislocation causes a phonon redshift of several milli-electron-volts within about two to four nanometers of the core,where both the strain field and Ge segregation play roles.With the presence of dislocation,the local interfacial thermal conductance can be either enhanced or reduced,depending on the complex interaction and competition between lattice disorder(dislocation)and element disorder(heterointerface mixing and Ge-segregation)at the interface.These findings provide valuable insights to improve the thermal properties of thermoelectric generators and thermal management systems through proper defect engineering.
基金supported by the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)the National Natural Science Foundation of China(Grant No.52350088)+1 种基金the Department of Science and Technology of Jiangsu Province(Grant No.BK20220032)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX241797)。
文摘The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this study explores the generation of PAM during the transport of electrically driven polarons along a singlestranded helix structure.We demonstrate that the motion of a polaron under an applied electric field inherently induces a finite PAM,exhibiting drift-locked behavior between the PAM and the polaron.By analyzing the time evolution of PAM distribution at each site,we identify the observed PAM as a natural consequence of coherent superposition between lattice waves,in which the chiral structure selectively determines the direction of induced PAM.Furthermore,we examine the roles of two types of electron-phonon interactions and structural periodicity in modulating PAM.These findings highlight the potential of chiral molecules as platforms for PAM generation and offer new insights into developing phonon-spin-based devices for information processing and transmission.
基金supported by the National Key R&D Program of China (Grant No. 2024YFA1408502)the National Natural Science Foundation of China (Grant Nos. 92365102, 62027807, 12474107, and 12174383)+1 种基金the Chinese Academy of Sciences project for Yong Scientists in Basic Research (Grant No. YSBR-030)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515011600)。
文摘We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb.
基金work was supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1402704 and 2022YFA1408302)the National Natural Science Foundation of China(Grant No.12274186)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)the Synergetic Extreme Condition User Facility(SECUF).
文摘Spin-phonon coupling is important in chromate spinel oxides ACr_(2)O_(4),but its role in LiFeCr_(4)O_(8)is not well understood.In this paper,we employ Raman scattering and first-principles phonon calculations to study this material.Ten out of 13 Raman-active modes are well assigned.Notably,no phonon splitting is observed across the structural phase transition due to the remarkably small Grüneisen constants.This observation,in conjunction with the structural data,provides compelling evidence that the structural phase transition in LiFeCr_(4)O_(8)is primarily driven by the spin-driven Jahn-Teller effect.Interestingly,some Raman modes(at 207 cm^(-1),306 cm^(-1)and 462 cm^(-1))exhibit unusual linewidth behavior across the temperature range investigated.Furthermore,the Raman spectra in different phases show no magnetic field dependence.These results suggest that phonons couple with short-range spin correlations,offering insights into how spin and lattice degrees of freedom interact in frustrated systems.
基金supported by the National Natural Science Foundation of China(Grant No.12204130)the Fundamental Research Funds for the Central University of China(Grant No.2019ZDPY16)+2 种基金the Basic Research Project of Xuzhou City(Grant No.KC22043)the support funded by the Graduate Innovation Program of China University of Mining and Technology(Grant Nos.2024WLJCRCZL266 and 2024WLJCRCZL294)the Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_2692)。
文摘In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.
基金supported by the National Natural Science Foundation of China(Grant No.12204482),the Natural Science Foundation of Shanxi Province(Grant No.202403021221164)Higher education teaching reform and innovation project of Shanxi Province(Grant No.J20220480)the Natural Science Foundation of Hainan Province(Grant Nos.525MS080 and 225MS076).
文摘Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investigate the lattice dynamics of Cs_(2)AgInCl_(6)using first-principles calculations.By explicitly incorporating four-phonon scattering and wave-like phonon tunneling,we predict a k_(l)of 0.52 W·m^(-1)·K^(-1)with a remarkably weak temperature dependence(k_(l)∝T^(-0.31)),confirming the intrinsically glass-like ultralow k_(l)in Cs_(2)AgInCl_(6).Further analyses reveal that hierarchical chemical bonds,loosely bonded rattling atoms and a mixed crystalline-liquid state collectively induce strong anharmonicity manifested in flat phonon modes.These factors dominate the glass-like thermal transport component of k_(l).This work uncovers the underlying mechanisms governing the unusual thermal transport properties in lead-free HDPs and offers guiding principles for designing novel energy conversion technologies.
基金supported by the National Natural Science Foundation of China(Grant No.12404011)the Natural Science Foundation of Hunan Province(Grant No.2023JJ40273)the Scientific Research Foundation of Hunan Provincial Education Department(Grant No.23B0495).
文摘Time-reversal symmetry(TRS)breaking induced dissipationless topological phonon edge modes provide an unprecedented way to manipulate phonon transport.However,the effect of TRS breaking on the transport properties of bulk phonon modes is still unclear.In this work,we assess the effect of local TRS-breaking domains on the transport properties of bulk phonon modes in a two-dimensional(2D)hexagonal phononic lattice model.The results show that bulk phonon modes can be strongly scattered by local TRS breaking owing to the shift of the local phonon band gap,which results in significant suppression of phonon transmission.Moreover,we show that the aperiodic distribution of local TRS-breaking domains can induce phonon Anderson localization,and the localization length can be effectively tuned by the strength of TRS breaking.Our study suggests that TRS breaking can not only be used to construct dissipationless topological phonon edge states,but also be used to block the transmission of bulk phonon modes by carefully controlling the size and distribution of TRS-breaking domains.Such results provide a highly alternative way for manipulating energy flux at the nanoscale.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea,funded by the Ministry of Education(No.2022R1I1A1A01056406)。
文摘Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic sensors,and piezoelectric energy harvesters,typically operating under the assumption of an external elastic wave incidence.Recently,a novel approach that uses defective PnCs as ultrasonic actuators to generate amplified waves has emerged.However,the existing studies are limited to the generation of either longitudinal or bending waves,with no research addressing the concurrent generation of both.Hence,this paper proposes a straightforward methodology for the concurrent generation and amplification of both wave types utilizing defect modes at independent defect-band frequencies.Bimorph piezoelectric elements are attached to the defect,with each element connected to independent external voltage sources.By precisely adjusting the magnitude and temporal phase differences between the voltage sources,concurrently amplified wave generation is achieved.The paper highlights the advantages of the proposed analytical model.This model is both computationally time-efficient and accurate,in comparison with the COMSOL simulation results.For instance,in case studies,the analytical model reduces the computational time from one hour to mere seconds,while maintaining acceptable error rates of 1%in peak frequencies.This concurrent wave-generation methodology opens new avenues for applications in rotating machinery fault diagnosis,structural health monitoring,and medical imaging.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11804288)the Key Scientific Research Project of Higher Education Institutions in Henan Province, China (Grant No. 20231205164502999)。
文摘Negative friction refers to a frictional force that acts in the same direction as the motion of an object, which has been predicted in terahertz(THz) gain systems [Phys. Rev. B 108 045406(2023)]. In this work, we investigate the enhancement of the negative friction experienced by nanospheres placed near a graphene substrate. We find that the magnitude of negative friction is related to the resonant coupling between the surface plasmon polaritons(SPPs) of the graphene and localized surface phonon polaritons(LSPh P) of nanospheres. We exam nanospheres consisted of several different materials, including SiO_(2), Si C, Zn Se, Na Cl, ln Sb. Our results suggest that the LSPh P of Na Cl nanospheres match effectively with the amplified SPPs of graphene sheets. The negative friction for Na Cl nanospheres can be enhanced about one-to-two orders of magnitude compared to that of silica(SiO_(2)) nanospheres. At the resonant peak of negative friction, the required quasi-Fermi energy of graphene is lower for Na Cl nanospheres. Our finds hold great prospects for the mechanical manipulations of nanoscale particles.
基金supported by the National Natural Science Foundation of China[52125307(to P.G.),12404192(to R.C.S),12274061(to L.Q.)]Key Research and Development Program from the Ministry of Science and Technology(2023YFA1406301)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.
基金National Natural Science Foundation of China(No.51705545)。
文摘This paper presents a locally resonant phononic crystal with excellent noise reduction in the low-frequency range as a soundproofing plate in mufflers.A locally resonant phononic crystal is established,and the bandgap range of the phononic crystal is analyzed by using COMSOL software.Taking the partition plate in the muffler as the object,the acoustic-solid coupling is studied to analyze the sound insulation characteristics of the locally resonant phononic crystal.A phononic crystal plate-like structure is established to analyze its noise reduction performance in the muffler.The results indicate that the locally resonant phononic crystal exhibits favorable low-frequency sound insulation performance within a bandgap range below 200 Hz.At 160 Hz,the noise reduction is 15 dB higher than that of ordinary partition plates.As the number of layers of the phononic crystal plate increases,its noise reduction effect gradually enhances,while the magnitude of the noise reduction increment tends to diminish.At 160 Hz,the single-,double-and triple-layer plates achieve peak reductions of 47,53 and 57 dB,respectively.Compared with the double-layer phononic crystal plate,the composite of the locally resonant phononic crystal plate and the steel plate has an average noise reduction of 5 dB higher.Through research and analysis of the composite locally resonant phononic crystal plates,more feasible combined structures can be provided for future muffler structural design.
基金The National Natural Science Foundation of China(No.12002086)。
文摘To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the dispersion curves of this phononic crystal model,and the results were compared with those from the finite element method to verify their accuracy.Subsequently,a parameter study explored the effects of the elastic foundation coeffi-cient and coverage ratio on the band gap.The results indicate that as the coverage ratio of the elastic foundation increases,the band gap significantly expands,reaching its maximum value at 100%coverage.Additionally,as the elastic foundation stiffness increases,the band gap gradually widens and converges toward fixed boundary conditions.The study also investigated the band gap of phononic crystal plates with defects,finding that the vibrational energy concentrates at the defect unit cell.Furthermore,the defect band frequency can be effectively modulated by adjusting the coefficient of the elastic foundation,providing a theoretical basis for achieving efficient energy conversion.
基金supported by the National Natural Science Foundation of China(Grant No.52175552)the National Key RD Program of China(Grant Nos.2022YFB3205400 and 2022YFB3204300).
文摘Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.
基金supported by the National Key R&D Program of China(No.2023YFA1407001)the National Natural Science Foundation of China(Nos.11975125,12204472,and 62304232)+1 种基金the Guangdong Special Support Program(No.2021TQ06C953)the Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(No.SKLIC-K2024-04).
文摘The superior radiation tolerance of silicon-on-insulator(SOI)wafers makes them critical for next-generation integrated circuit and micro-electro-mechanical system electronics in space technology and nuclear energy,and yet the inherently low thermal conductivity buried oxide layer severely impedes thermal management in SOI-based radio frequency/power devices.While diamond offers exceptional thermal conductivity to enhance heat dissipation,its significant thermomechanical mismatch with silicon poses major challenges to reliable hetero-integration.Here we demonstrate a novel silicon film-on-diamond(SOD)heterostructure using microtransfer printing(μTP)technology,with comparative analysis against surface activated bonded silicon-on-silicon carbide(SOC)and conventional SOI wafers.TheμTP-SOD samples exhibit near-zero residual stress(0.026 GPa)in the transferred Si layer and substantially reduced interfacial thermal resistance(ITR)compared to conventional SOI and SOC wafers.Integrated analysis of interfacial microstructures and molecular dynamics simulations reveals how interfacial structures and amorphous compositions govern the phonon thermal transport.Particularly,the amorphous SiO-SiC transition layer enhances phonon transmission at theμTP-SOD heterointerface to achieve a low ITR of 6.3+1.6/-1.5 m^(2)·K/GW.Finite element analysis verifies that these interfacial enhancements,combined with the diamond’s exceptional thermal conductivity,reduce the device junction-temperature rise by 66.7%relative to SOI devices at 15 W/mm output power.The low residual stress and reduced ITR ofμTP-SOD are expected to provide promising thermal management schemes for SOI-based electronics.
基金supported by the National Natural Science Foundation of China(Nos.21925302,92250306)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450202)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0303303)the National Key Research and Development Program of China(2018YFA0208702).
文摘Phonon coherence can reflect electron‒phonon coupling information and has been proven to modulate electronic states and charge transport.The manipulation of phonon coherence through spacer cation engineering in organic‒inorganic hybrid perovskites(OIHPs)has been extensively demonstrated;however,the underlying structural origin remains elusive at the molecular level.Herein,we present molecular structure and temperature-dependent coherent phonon studies via a combination of sum frequency generation vibrational spectroscopy(SFG-VS)and transient absorption spectroscopy(TAS).The conformational order of spacer cations dictates the coherent phonon oscillations in 2D OIHPs.Our study further analyzes the static order and dynamic disorder in 2D perovskites.This work provides molecular-level insights into the role of spacer cations in tuning structural order and may provide valuable guidance for advancing emergent optoelecltronics development.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174276 and 12304059)the Basic and Applied Basic Research Foundation of Guangdong Province(Grant Nos.2024A1515010521,2024A1515012635,and 2022A1515110572).
文摘The interfacial thermal resistance(ITR)at material interfaces has emerged as a critical factor in the thermal management of micro/nanoelectronic devices and composite materials.Using non-equilibrium molecular dynamics simulations,we systematically investigate how simulation parameters affect the calculated ITR in Si/Ge heterojunctions.Our results demonstrate that the ITR decreases with increasing system length L_(sys)and thermal bath length L_(bath).We identify linear relationships between ITR and the inverse of both L_(sys)and L_(bath),enabling reliable extrapolation to infinite-system values.While the thermostat coupling constantτshows a negligible influence on ITR,excessively large values(τ>5 ps)compromise temperature control accuracy.Spectral analysis reveals that these size effects primarily originate from mid-to-low-frequency phonons(<6 THz),whose long mean free paths make their transport particularly sensitive to system dimensions.This work establishes fundamental guidelines for parameter selection in interfacial thermal transport simulations,while providing new insights into phonon-interface interactions.The findings offer valuable implications for thermal design in high-power devices and composite materials,where accurate ITR prediction is crucial for performance optimization.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204482 and U2330104)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2020L0537)+2 种基金the Natural Science Foundation of Shanxi Province(Grant No.202403021221164)Higher Education Teaching Reform and Innovation Project of Shanxi Province(Grant No.J20220480)Graduate Curriculum Ideological and Political Education Project of Shanxi Normal University(Grant No.010520233013)。
文摘Lead-free halide perovskites provide a promising solution for efficient thermoelectric materials due to their ultralow lattice thermal conductivity(κ_(L)).However,disadvantages such as the electrically resistive nature strongly affect their power factor.In this work,we introduced the Te-based halide perovskites thermoelectric material Cs_(2)TeI_(6),which is already known as a promising candidate for photovoltaic applications due to its moderate band gap.Our findings reveal that Cs_(2)TeI_(6)has an exceptionally ultralow κ_(L)at room temperature,reaching as low as 0.17 W·m^(-1)·K^(-1).We found that the four-phonon scattering processes play a dominant role in suppressing the thermal transport,leading to an approximate 50% reduction in its particle-like thermal conductivity κ_(p) at 300 K.The ultralow κ_(L)can be mainly attributed to the strong discrepancy in bonding strength,which induces large anharmonicity.The flat and dense phonon dispersions result in a strong phonon scattering rate,making it easy to generate wavelike phonon tunneling.After accounting for the wavelike thermal conductivity κ_(c),a nonstandard T^(-0.30)temperature dependence was observed.Benefiting from the ultralow κ_(L),n-type Cs_(2)TeI_(6)is predicted to achieve an extraordinary ZT of 2.26 at 700 K.This work highlights a pathway for searching high-performance and low-cost thermoelectrics based on lead-free halide perovskites.
基金supported by Tencent’s Program of Aspiring Explorers in Sciencesupport by the National Natural Science Foundation of China (Grant No. 12274477)the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061)。
文摘We theoretically investigated the chiral phonons of honeycomb-type bilayer Wigner crystals recently discovered in van der Waals structures of layered transition metal dichalcogenides. These chiral phonons can emerge under the inversion symmetry breaking introduced by an effective mass imbalance between the two layers or a moiré potential in one layer, as well as under the time-reversal symmetry breaking realized by applying a magnetic field. Considering the wide tunability of layered materials, the frequencies and chirality of phonons can both be tuned by varying the system parameters. These findings suggest that bilayer honeycomb-type Wigner crystals can serve as an exciting new platform for studying chiral phonons.
基金Project supported by the National Natural Science Foundation of China(Nos.11872105,12072022,11911530176,and 12202039)。
文摘In this paper,the dispersion,attenuation,and bandgap characteristics of in-plane coupled Bloch waves in one-dimensional piezoelectric semiconductor(PSC)phononic crystals are investigated,emphasizing the influence of positive-negative(PN)junctions.Unlike piezoelectric phononic crystals,the coupled Bloch waves in PSC phononic crystals are attenuated due to their semiconductor properties,and thus the solution of Bloch waves becomes more complicated.The transfer matrix of the phononic crystal unit cell is obtained using the state transfer equation.By applying the Bloch theorem for periodic structures,the dispersion relation of the coupled Bloch waves is derived,and the dispersion,attenuation,and bandgap are obtained in the complex wave number domain.It is found that the influence of the PN junction cannot be neglected.Moreover,the effects of the PN junction under different apparent wave numbers and steady-state carrier concentrations are provided.This indicates the feasibility of adjusting the propagation characteristics of Bloch waves through the regulation of the PN heterojunction.