We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvolta...We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvoltage(I-V)curve in the current sweeping measurement mode,from which the breakdown voltage is determined.The photocurrent spectra and blackbody current responsivities at different voltages are measured.Based on the experimental data,the peak responsivity of 0.3 A/W(at 0.15 V,8 K)is derived,and the detection sensitivity is higher than 10^(11)Jones,which is in the similar level as that of the commercialized liquid-helium-cooled silicon bolometers.We attribute the high detection performance of the device to the small ohmic contact resistance of-2Ωand the big breakdown bias.展开更多
The performance of dye-sensitized solar cells (DSSCs) is strongly affected by the properties of semiconductor nanoparticles. In this work, we used TiO2 particles prepared by TiC14 hydrolysis n times on A1203 films ...The performance of dye-sensitized solar cells (DSSCs) is strongly affected by the properties of semiconductor nanoparticles. In this work, we used TiO2 particles prepared by TiC14 hydrolysis n times on A1203 films (A/T(n)), and investigated morphology, photoelectric, and electron transport properties of A/T(n). The TiO2 shell was composed of 10-20 nm nanoparticles and the number of nanoparticles increased with increasing TIC14 treatment times. The highest photoelectric conversion efficiency of 3.23% was obtained as A/T(4). IMPS results indicated that electron transport rate was high enough to conduct current, and was not the dominating effect to limit the Jsc. Jsc was mainly determined by dye loading on TiO2 and the interconnection of TiO2. These may provide a new strategy for preparing semiconductor working electrodes for DSSC.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2017YFF0106302)the National Basic Research Program of of China(Grant No.2014CB339803)+1 种基金the National Natural Science Foundation of China(Grant Nos.61404150,61405233,and 61604161)the Shanghai Municipal Commission of Science and Technology,China(Grant Nos.15JC1403800,17ZR1448300,and 17YF1429900)
文摘We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector(QWP)device with a peak response frequency of 4.3 THz.The negative differential resistance(NDR)phenomenon is found in the dark currentvoltage(I-V)curve in the current sweeping measurement mode,from which the breakdown voltage is determined.The photocurrent spectra and blackbody current responsivities at different voltages are measured.Based on the experimental data,the peak responsivity of 0.3 A/W(at 0.15 V,8 K)is derived,and the detection sensitivity is higher than 10^(11)Jones,which is in the similar level as that of the commercialized liquid-helium-cooled silicon bolometers.We attribute the high detection performance of the device to the small ohmic contact resistance of-2Ωand the big breakdown bias.
基金Project supported by the National Materials Genome Project of China(Grant No.2016YFB0700600)the National Natural Science Foundation of China(Grant No.51673204)
文摘The performance of dye-sensitized solar cells (DSSCs) is strongly affected by the properties of semiconductor nanoparticles. In this work, we used TiO2 particles prepared by TiC14 hydrolysis n times on A1203 films (A/T(n)), and investigated morphology, photoelectric, and electron transport properties of A/T(n). The TiO2 shell was composed of 10-20 nm nanoparticles and the number of nanoparticles increased with increasing TIC14 treatment times. The highest photoelectric conversion efficiency of 3.23% was obtained as A/T(4). IMPS results indicated that electron transport rate was high enough to conduct current, and was not the dominating effect to limit the Jsc. Jsc was mainly determined by dye loading on TiO2 and the interconnection of TiO2. These may provide a new strategy for preparing semiconductor working electrodes for DSSC.