In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report...In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report the observation of intrinsic topological Hall and topological Nernst effects below the Néel temperature(T_(N)=25 K)in the antiferromagnetic(AFM)topological insulator Mn Bi_(2)Te_(4).The maximum of topological Hall resistivity reaches approximately 9μΩ·cm at 2 K,while the topological Nernst signal attains a peak value of 0.1μV/K near 10 K.These anomalous transport behaviors originate from the net Berry curvature induced by the non-collinear spin structure in the canted AFM state.Our results suggest a close connection between the topological thermoelectric effect and non-collinear AFM order in AFM topological insulators.展开更多
Multicolor fiber lasers have emerged as a promising technology with significant applications in optical communications,laser ranging,and precision sensing.Beyond their practical utility,these systems serve as ideal pl...Multicolor fiber lasers have emerged as a promising technology with significant applications in optical communications,laser ranging,and precision sensing.Beyond their practical utility,these systems serve as ideal platforms for investigating fundamental soliton phenomena,including soliton collisions,explosions,and state transitions.However,the complex nonlinear dynamics inherent in these systems present substantial challenges for conventional numerical simulations.展开更多
基金supported in part by the Natural Science Foundation of China(Grant No.U1932155)the Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LHZSZ24A040001)+4 种基金the National Key R&D Program of China(Grant No.2022YFA1602602)the National Key R&D Program of China(Grant Nos.2022YFA1403800 and 20-23YFA1406500)the China Postdoctoral Science Foundation(Grant No.2023-M730011)the National Natural Science Foundation of China(Grant No.12274459)supported by the HZNU Scientific Research and Innovation Team Project(No.TD2025013)。
文摘In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report the observation of intrinsic topological Hall and topological Nernst effects below the Néel temperature(T_(N)=25 K)in the antiferromagnetic(AFM)topological insulator Mn Bi_(2)Te_(4).The maximum of topological Hall resistivity reaches approximately 9μΩ·cm at 2 K,while the topological Nernst signal attains a peak value of 0.1μV/K near 10 K.These anomalous transport behaviors originate from the net Berry curvature induced by the non-collinear spin structure in the canted AFM state.Our results suggest a close connection between the topological thermoelectric effect and non-collinear AFM order in AFM topological insulators.
文摘Multicolor fiber lasers have emerged as a promising technology with significant applications in optical communications,laser ranging,and precision sensing.Beyond their practical utility,these systems serve as ideal platforms for investigating fundamental soliton phenomena,including soliton collisions,explosions,and state transitions.However,the complex nonlinear dynamics inherent in these systems present substantial challenges for conventional numerical simulations.