Phenolamide(PA)metabolites play important roles in the interaction between plants and pathogens.The putrescine hydroxycinnamoyl transferase genes Os PHT3 and Os PHT4 positively regulate rice cell death and resistance ...Phenolamide(PA)metabolites play important roles in the interaction between plants and pathogens.The putrescine hydroxycinnamoyl transferase genes Os PHT3 and Os PHT4 positively regulate rice cell death and resistance to Magnaporthe oryzae.The b ZIP transcription factor APIP5,a negative regulator of cell death and rice immunity,directly binds to the Os PHT4 promoter to regulate putrescine-derived PAs.Whether other hydroxycinnamoyl transferase(HT)genes also participate in APIP5-mediated immunity remains unclear.Surprisingly,we find that genes encoding agmatine hydroxycinnamoyl transferases Os AHT1 and Os AHT2,tryptamine hydroxycinnamoyl transferases Os TBT1 and Os TBT2,and tyramine hydroxycinnamoyl transferases Os THT1 and Os THT2,responsible for the biosynthesis of polyamine-derived PAs are all up-regulated in APIP5-RNAi transgenic plants compared with segregated wild-type rice.Furthermore,both Os AHT1/2 and Os TBT1/2 are induced during M.oryzae infection,showing expression patterns similar to those previously reported for Os THT1/2 and Os PHT3/4.Transgenic plants overexpressing either Os AHT2-GFP or Os TBT1-GFP show enhanced resistance against M.oryzae and accumulated more PA metabolites and lignin compared with wild-type plants.Interestingly,as demonstrated for Os PHT4,APIP5 directly binds to the promoters of Os AHT1/2,Os TBT1/2,and Os THT1/2,repressing their transcription.Together,these results indicate that the HT genes are common targets of APIP5 and that PAs play critical roles in rice immunity.展开更多
Plants have evolved a sophisticated chemical defense network to counteract pathogens,with phenolamides and salicylic acid(SA)playing pivotal roles in the immune response.However,the synergistic regulatory mechanisms o...Plants have evolved a sophisticated chemical defense network to counteract pathogens,with phenolamides and salicylic acid(SA)playing pivotal roles in the immune response.However,the synergistic regulatory mechanisms of their biosynthesis remain to be explored.Here,we identified a biosynthetic gene cluster on chromosome 2(BGC2)associated with the biosynthesis of phenolamide and SA,wherein the key component SlEPS1 exhibits dual catalytic functions for the synthesis of phenolamides and SA.Overexpression of the key component SlEPS1 of BGC2 in tomato enhanced resistance to the bacterial pathogen Pst DC3000,whereas knockout plants were more susceptible.Exogenous applications of SA and phenolamides revealed that these two compounds act synergistically to enhance plant resistance.Notably,during tomato domestication,a disease-resistant allele of SlEPS1,SlEPS1HapB,was subject to negative selection,leading to a reduction in phenolamide and SA levels and compromised disease resistance in modern varieties.Moreover,the SlMYB78 directly regulates the BGC2 gene cluster to enhance phenolamide and SA biosynthesis,modulating resistance to Pst DC3000.Our study employed multi-omics approaches to describe the synergistic regulation of phenolamide and SA biosynthesis,offering new insights into the complexity of plant immune-related metabolism.展开更多
Among plant metabolites,phenolamides,which are conjugates of hydroxycinnamic acid derivatives and polyamines,play important roles in plant adaptation to abiotic and biotic stresses.However,the molecular mechanisms und...Among plant metabolites,phenolamides,which are conjugates of hydroxycinnamic acid derivatives and polyamines,play important roles in plant adaptation to abiotic and biotic stresses.However,the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear.In this study,we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters(BGC7 and BGC11)containing 12 genes involved in phenolamide metabolism,including four biosynthesis genes(two 4CL genes,one C3H gene,and one CPA gene),seven decoration genes(five AT genes and two UGT genes),and one transport protein gene(DTX29).Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters,thereby promoting phenolamide accumulation.Genetic and physiological analyses showed that BGC7,BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato.Natural variation analysis suggested that BGC7,BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement,leading to reduced phenolamide content and drought tolerance of cultivated tomato.Collectively,our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.展开更多
Rape bee pollen has attracted increasing interests for its excellent protective effect against chemicalinduced liver injury owing to its abundant polyphenols.This study aims to analyze the types and contents of phenol...Rape bee pollen has attracted increasing interests for its excellent protective effect against chemicalinduced liver injury owing to its abundant polyphenols.This study aims to analyze the types and contents of phenolamides(seldom concerned)in rape bee pollen and their protective mechanism on alcoholic liver disease(ALD).Different from the previous finding that flavonoids are dominant polyphenols in bee pollen polyphenolic extract,our results demonstrated that there are only three flavonoids but 24 phenolamides in the as-prepared rape bee pollen phenolic extract(PPE).In addition,PPE was found to significantly improve the viability(from 54.9%to 84.1%,89.2%,and 94.0%)of alcohol-induced AML12 cells and alleviate alcoholinduced cell apoptosis(from 28.5%to 22.89%,22.0%,and 17.4%).To dissect the underlying mechanism for the protective effect of PPE against ALD,the molecular pathway was identified by RNA-Seq analysis.Transcriptome data revealed that PPE may protect against ALD by decreasing inflammation,cholesterol,and fatty acid synthesis(P<0.05).The National Institute on Alcohol Abuse and Alcoholism(NIAAA)model was used to further evaluate the hepatoprotective effect of PPE in vivo,and the results validated that PPE could alleviate liver injury and hepatic steatosis(from 22.7%to 11.5%and 10.9%)induced by alcohol.As the dominant polyphenols in PPE,phenolamides can be a class of valuable polyphenolic compounds in bee pollen with the potential to alleviate ALD.展开更多
Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and c...Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyI-CoA/ feruloyI-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putresdne N-hydrox- ycinnamoyltransferase and agmatine N-hydroxycinnamoyl- transferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/ agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyl- transferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyI-L-isoleucine deficient plants (Osjarl), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyI-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.展开更多
基金supported by grants from the National Natural Science Foundation of China (32161143009, 31822041 and 31972225) to Y.N.the National Natural Science Foundation of China (U20A2021) to R.W.the National Natural Science Foundation of China (31801692) to F.Z
文摘Phenolamide(PA)metabolites play important roles in the interaction between plants and pathogens.The putrescine hydroxycinnamoyl transferase genes Os PHT3 and Os PHT4 positively regulate rice cell death and resistance to Magnaporthe oryzae.The b ZIP transcription factor APIP5,a negative regulator of cell death and rice immunity,directly binds to the Os PHT4 promoter to regulate putrescine-derived PAs.Whether other hydroxycinnamoyl transferase(HT)genes also participate in APIP5-mediated immunity remains unclear.Surprisingly,we find that genes encoding agmatine hydroxycinnamoyl transferases Os AHT1 and Os AHT2,tryptamine hydroxycinnamoyl transferases Os TBT1 and Os TBT2,and tyramine hydroxycinnamoyl transferases Os THT1 and Os THT2,responsible for the biosynthesis of polyamine-derived PAs are all up-regulated in APIP5-RNAi transgenic plants compared with segregated wild-type rice.Furthermore,both Os AHT1/2 and Os TBT1/2 are induced during M.oryzae infection,showing expression patterns similar to those previously reported for Os THT1/2 and Os PHT3/4.Transgenic plants overexpressing either Os AHT2-GFP or Os TBT1-GFP show enhanced resistance against M.oryzae and accumulated more PA metabolites and lignin compared with wild-type plants.Interestingly,as demonstrated for Os PHT4,APIP5 directly binds to the promoters of Os AHT1/2,Os TBT1/2,and Os THT1/2,repressing their transcription.Together,these results indicate that the HT genes are common targets of APIP5 and that PAs play critical roles in rice immunity.
基金supported by grants from the National Key Research and Development Program of China(2022YFF1001900)the Hainan Province Science and Technology Special Fund(No.ZDYF2022XDNY144)+2 种基金the Hainan Provincial Academician Innovation Platform Project(No.HDYSZX-202004)the Hainan University Startup Fund(No.KYQD(ZR)21025)the Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture,Hainan University(No.XTCX2022NYB06)。
文摘Plants have evolved a sophisticated chemical defense network to counteract pathogens,with phenolamides and salicylic acid(SA)playing pivotal roles in the immune response.However,the synergistic regulatory mechanisms of their biosynthesis remain to be explored.Here,we identified a biosynthetic gene cluster on chromosome 2(BGC2)associated with the biosynthesis of phenolamide and SA,wherein the key component SlEPS1 exhibits dual catalytic functions for the synthesis of phenolamides and SA.Overexpression of the key component SlEPS1 of BGC2 in tomato enhanced resistance to the bacterial pathogen Pst DC3000,whereas knockout plants were more susceptible.Exogenous applications of SA and phenolamides revealed that these two compounds act synergistically to enhance plant resistance.Notably,during tomato domestication,a disease-resistant allele of SlEPS1,SlEPS1HapB,was subject to negative selection,leading to a reduction in phenolamide and SA levels and compromised disease resistance in modern varieties.Moreover,the SlMYB78 directly regulates the BGC2 gene cluster to enhance phenolamide and SA biosynthesis,modulating resistance to Pst DC3000.Our study employed multi-omics approaches to describe the synergistic regulation of phenolamide and SA biosynthesis,offering new insights into the complexity of plant immune-related metabolism.
基金supported by grants from the National Key Research and Development Program of China(2022YFF1001900)the Hainan Province Science and Technology Special Fund(no.ZDYF2022XDNY144)+4 种基金the Hainan Provincial Academician Innovation Platform Project(no.HD-YSZX-202004)the Young Elite Scientists Sponsorship Program by CAST(no.2019QNRC001)the Hainan University Startup Fund(no.KYQD(ZR)21025)the Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture,Hainan University(no.XTCX2022NYB06)the Innovation Project of Postgraduates of Hainan Province(no.Qhyb2022-56).
文摘Among plant metabolites,phenolamides,which are conjugates of hydroxycinnamic acid derivatives and polyamines,play important roles in plant adaptation to abiotic and biotic stresses.However,the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear.In this study,we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters(BGC7 and BGC11)containing 12 genes involved in phenolamide metabolism,including four biosynthesis genes(two 4CL genes,one C3H gene,and one CPA gene),seven decoration genes(five AT genes and two UGT genes),and one transport protein gene(DTX29).Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters,thereby promoting phenolamide accumulation.Genetic and physiological analyses showed that BGC7,BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato.Natural variation analysis suggested that BGC7,BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement,leading to reduced phenolamide content and drought tolerance of cultivated tomato.Collectively,our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
基金supported by Key Research and Development Program of Hubei Province(2022BBA0072)Applied Fundamental Frontier Project of Wuhan Science and Technology Bureau(2020020601012271)。
文摘Rape bee pollen has attracted increasing interests for its excellent protective effect against chemicalinduced liver injury owing to its abundant polyphenols.This study aims to analyze the types and contents of phenolamides(seldom concerned)in rape bee pollen and their protective mechanism on alcoholic liver disease(ALD).Different from the previous finding that flavonoids are dominant polyphenols in bee pollen polyphenolic extract,our results demonstrated that there are only three flavonoids but 24 phenolamides in the as-prepared rape bee pollen phenolic extract(PPE).In addition,PPE was found to significantly improve the viability(from 54.9%to 84.1%,89.2%,and 94.0%)of alcohol-induced AML12 cells and alleviate alcoholinduced cell apoptosis(from 28.5%to 22.89%,22.0%,and 17.4%).To dissect the underlying mechanism for the protective effect of PPE against ALD,the molecular pathway was identified by RNA-Seq analysis.Transcriptome data revealed that PPE may protect against ALD by decreasing inflammation,cholesterol,and fatty acid synthesis(P<0.05).The National Institute on Alcohol Abuse and Alcoholism(NIAAA)model was used to further evaluate the hepatoprotective effect of PPE in vivo,and the results validated that PPE could alleviate liver injury and hepatic steatosis(from 22.7%to 11.5%and 10.9%)induced by alcohol.As the dominant polyphenols in PPE,phenolamides can be a class of valuable polyphenolic compounds in bee pollen with the potential to alleviate ALD.
基金supported by Grant-in-Aid for Scientific Research (No. 24570026, IG No. 15K18820, TS)Japan Advanced Plant Science Network that provided the LC-MS/MS instrumentation for metabolite measurements
文摘Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyI-CoA/ feruloyI-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putresdne N-hydrox- ycinnamoyltransferase and agmatine N-hydroxycinnamoyl- transferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/ agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyl- transferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyI-L-isoleucine deficient plants (Osjarl), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyI-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.