This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the l...This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.展开更多
In September 2020,a pioneering observational network of three X-band phased-array radars(XPARs)was established in Xiamen,a subtropical coastal and densely populated city in southeastern China.Statistically,this study ...In September 2020,a pioneering observational network of three X-band phased-array radars(XPARs)was established in Xiamen,a subtropical coastal and densely populated city in southeastern China.Statistically,this study demonstrated that the XPAR network outperforms single S-band radar in revealing the warm-season convective storms in Xiamen in a fine-scale manner.The findings revealed that convective activity in Xiamen is most frequent in the central and northern mountainous regions,with lower frequency observed in the southern coastal areas.The diurnal pattern of convection occurrence exhibited a unimodal distribution,with a peak in the afternoon.The frequent occurrence of convective storms correlates well in both time and space with the active terrain uplift that occurs when the prevailing winds encounter mountainous areas.Notably,September stands apart with a bimodal diurnal pattern,featuring a prominent afternoon peak and a significant secondary peak before midnight.Further examination of dense rain gauge data in Xiamen indicates that high-frequency areas of short-duration heavy rainfall largely coincide with regions of active convective storms,except for a unique rainfall hotspot in southern Xiamen,where moderate convection frequency is accompanied by substantial rainfall.This anomalous rainfall,predominantly nocturnal,appears less influenced by terrain uplift and exhibits higher precipitation efficiency than daytime rainfall.These preliminary findings offer insights into the characteristics of convection occurrence in Xiamen's subtropical coastal environment and hold promise for enhancing the accuracy of convection and precipitation forecasts in similar environments.展开更多
In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify...In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved.展开更多
To verify the detection capability of X-band dual-polarization phased-array radar for forest fires,this paper utilizes X-band dual-polarization phased-array radar data,Himawari-8 satellite data,combined with ground me...To verify the detection capability of X-band dual-polarization phased-array radar for forest fires,this paper utilizes X-band dual-polarization phased-array radar data,Himawari-8 satellite data,combined with ground meteorological automatic station data.A case study of a forest fire in Ao Feng Mountain on February 19,2021,was conducted to comparatively analyze the monitoring results from these two remote sensing methods.The results show that both methods exhibit significant features associated with the forest fire process observed and are effective modern methods of forest fire monitoring.The Himawari-8 satellite identified the fire point at 07:10(LST;LST=UTC+8)with subsequent observations every 10 minutes until 10:00,nearly two hours before the fire was fully extinguished.Compared with the satellite,the Xband dual polarization phased array radar detectedthe fire 14 minutes earlier,with an improved temporal resolution of one minute,and was not affected by cloud cover.In the triggering stage,vigorous stage,sustained burning stage,and extinguishing stage of the forest fire,radar characteristic factors including reflectivity(Z),differential reflectivity(ZDR),and correlation coefficient(CC)showed strong correlations with the fire progression.The radar monitoring results were continuous,complete,and precise.In summary,the X-band dual-polarization phased-array radar offers more detailed detection information,shorter detection time interval,and higher detection spatial accuracy.It presents a promising new method for forest fire detection,providing crucial guidance for on-site rescue operations,particularly for small-scale fire events.展开更多
This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-arra...This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-array TRX are discussed.A four-stage wideband high-power class-AB PA with distributed-active-transformer(DAT)power combining and multi-stage second-harmonic traps is proposed,ensuring the mitigated amplitude-to-phase(AM-PM)distortions across wide carrier frequencies without degrading transmitting(TX)power,gain and efficiency.TX and receiving(RX)switching is achieved by a matching network co-designed on-chip T/R switch.In each TRX element,6-bit 360°phase shifting and 6-bit 31.5-dB gain tuning are respectively achieved by the digital-controlled vector-modulated phase shifter(VMPS)and differential attenuator(ATT).Fabricated in 65-nm bulk complementary metal oxide semiconductor(CMOS),the proposed TRX demonstrates the measured peak TX/RX gains of 25.5/21.3 dB,covering the 24−29.5 GHz band.The measured peak TX OP1dB and power-added efficiency(PAE)are 20.8 dBm and 21.1%,respectively.The measured minimum RX NF is 4.1 dB.The TRX achieves an output power of 11.0−12.4 dBm and error vector magnitude(EVM)of 5%with 400-MHz 5G NR FR2 OFDM 64-QAM signals across 24−29.5 GHz,covering 3GPP 5G NR FR2 operating bands of n257,n258,and n261.展开更多
AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 ...AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 males, 19 females) with ages ranging between 29 and 75 who have biopsy proven rectal tumor underwent both MRI and ERUS examinations before surgery. All patients were evaluated to determine the diagnostic accuracy of depth of transmural tumor invasion and lymph node metastases. Imaging results were correlated with histopathological findings regarded as the gold standard and both modalities were compared in terms of predicting preoperative local staging of rectal carcinoma. RESULTS: The pathological T stage of the tumors was: pT1 in 1 patient, pT2 in 9 patients, pT3 in 21 patients and pT4 in 3 patients. The pathological N stage of the tumors was: pN0 in 19 patients, pN1 in 9 patients and pN2 in 6 patients. The accuracy of T staging for MRI was 89.70% (27 out of 34). The sensitivity was 79.41% and the specificity was 93.14%. The accuracy of T staging for ERUS was 85.29% (24 out of 34). The sensitivity was 70.59% and the specificity was 90.20%. Detection of lymph node metastases usingphased-array MRI gave an accuracy of 74.50% (21 out of 34). The sensitivity and specificity was found to be 61.76% and 80.88%, respectively. By using ERUS in the detection of lymph node metastases, an accuracy of 76.47% (18 out of 34) was obtained. The sensitivity and specificity were found to be 52.94% and 84.31%, respectively. CONCLUSION: ERUS and phased-array MRI are complementary methods in the accurate preoperative staging of rectal cancer. In conclusion, we can state that phased-array MRI was observed to be slightly superior in determining the depth of transmural invasion (T stage) and has same value in detecting lymph node metastases (N stage) as compared to ERUS.展开更多
The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value i...The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.展开更多
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability ...An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed ...In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.展开更多
Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be elimi...Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.展开更多
According to the frequency property of Phasedarray ground penetrating radar(PGPR),this paper gives a frequency point slice method based on Wigner time-frequency analysis.This method solves the problem of analysis for ...According to the frequency property of Phasedarray ground penetrating radar(PGPR),this paper gives a frequency point slice method based on Wigner time-frequency analysis.This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable.At last,the analytical results of road test data of the Three Gorges prove the analytical method efficient.展开更多
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach...The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.展开更多
A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front...A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.展开更多
To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method ca...To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method calculates time delay of multi-receivers, basing on the signal of the nearest receiver, then shifts other signals and adds them up, and gets one signal at last. It has been proved that this method can restrain noise, multiple waves, clutter waves and improve the precision of time location. In the end, an example is given to prove the method's efficiency.展开更多
A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple loci patterns by electronically changing its amplitude or phase pattern. Th...A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple loci patterns by electronically changing its amplitude or phase pattern. This method involves using a technique of combining switching and rotating of multiple foei patterns to create a uniform temperature over tissue volumes in various size. Using this method, the target tissue deep in the body can be heated to a specified temperature, which gives conditions for thermo-sensi- tive liposomes release. A simulation study for a 108-element, spherically sectioned array was performed to determine an optimal heating scheme from a set of multiple focus fields which were produced by inputting different combinations of phases and amplitudes. Comparisons of a static multiple foei field, the switched fields and the switched-rotated fields indicated that the technique of combining switching and rotating of multiple foei patterns has advantages of both lowering the peak temperature and evening the temperature distribution. The simulation results also show that the therapeutic heating zones in various size ( Φ5mm ~40mm) with uniform temperature distributions can be obtained employing the combined method. These results offer significant data for desisting thermotherapy equipment for tumor-specific drug release with thermo-sensitive liposomes.展开更多
Dual-Doppler radar detection and wind-field retrieval techniques are crucial for capturing small-scale structures within convective systems.The spatiotemporal resolution of radar data is a key factor influencing the a...Dual-Doppler radar detection and wind-field retrieval techniques are crucial for capturing small-scale structures within convective systems.The spatiotemporal resolution of radar data is a key factor influencing the accuracy of wind-field observations.Recently,an advanced X-band phased-array weather radar system was deployed in Foshan,Guangdong Province,China,comprising a central collaborative control unit and multiple networked phased-array radar front-ends.These radar front-ends work together to scan a common area,achieving a maximum data time difference of 5 s and a volume scan interval of 30 s,thereby providing three-dimensional wind-field data with higher spatiotemporal resolution and greater accuracy than achieved using traditional methods.This study utilized the X-band phased-array weather radar system to analyze the development of a substantial hailstorm that occurred over Foshan on 26 March 2022.Analysis indicated that hail cloud activity intensified considerably after 1442 local time,with the maximum reflectivity factor exceeding 60 dBZ above the altitude of the-20℃ level,and reflectivity continued to increase over the subsequent 12 min.More precise information on the flow-field structure of the storm was obtained by examining the X-band radar data.The temporal and vertical variations in the maximum reflectivity factor,updraft velocity,vertical wind shear,and horizontal wind speed within a hailstorm cloud were scrutinized.The results show that the altitude,intensity,and range of the main updraft area increased as the storm core ascended.Concurrently,the vertical wind shear at mid-lower levels of the storm became more pronounced as the altitude of the strong radar echo center increased prior to the peak of the updraft.Therefore,a new hail warning index was developed by using the vertical wind shear,and the index can be used to issue warnings up to 12 min earlier than achievable using traditional methods detecting increases in hailstorm intensity.展开更多
A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with...A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.展开更多
In mobile satellite communication networks employing digital beam forming technology,beam alignment imposes great influence on link quality and network efficiency.Owing to complex coupling motion by low earth orbit(LE...In mobile satellite communication networks employing digital beam forming technology,beam alignment imposes great influence on link quality and network efficiency.Owing to complex coupling motion by low earth orbit(LEO)satellite and ship,direction of arrival(DOA)of target satellite varies rapidly and nonlinearly.It then causes difficulty to accurately track the DOA.In this work,an adaptive tracking algorithm is proposed by exploiting advantages of flexible parameter configuration of digital phased-array antenna.The alignment process basically consists of observation and tracking.In the observation stage,two-dimensional(2-D)multiple signal classification(MUSIC)is applied by the ship-borne digital phased-array antenna to estimate beam direction of satellite;in the tracking stage,an extended Kalman filter(EKF)based adaptive tracking is designed to achieve fast and accurate alignment.The proposed adaptive tracking improves performance by adaptively estimating tracking parameters in EKF firstly.The estimation results are then used as feedback to adaptively adjust digital phased-array antenna parameters to improve estimation accuracy of DOA.Simulation results under sea state 5 show that the proposed tracking algorithm improves tracking accuracy and stability over conventional ones.展开更多
Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through ...Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through casing.The full waveforms are measured with different cement bonding models.By analyzing the measured wavetrains and the time-slowness correlation graphs,it is showed that when the generation conditions of the refracted compressional wave and the refracted shear wave are reached successively by regulating the direction of acoustic beam radiated from the linear phased-array transmitter,steered angle of the main radiation lobe with both good bonding interfaces.The refracted compressional wave and the refracted shear wave can be stimulated obviously and the casing wave can be suppressed effectively,even when the casing and cement(or the cement and formation) is not bonded.Based on these observations, it is worthwhile to apply the linear phased-array transmitter to determine formation velocities,particularly in poorly bonded cased well.The works establish the experimental and theoretical foundation for new generation cased-hole acoustic logging tool development.展开更多
基金supported by the National Key R&D Program of China(2022YFC3004101)the National Natural Science Foundation of China(Grant No.42275006)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011814)the China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202302)the Science and Technology Research Project of Guangdong Meteorological Service(Grant No.GRMC2023Q35)。
文摘This study presents finely resolved radar signatures of multiple cyclonic vortices associated with an EF2 tornadic supercell that occurred in Guangzhou on 16 June 2022 and discusses how the mesocyclone formed on the lee side of mountain.A nearby X-band phased-array radar provides evidence that the mesocyclone was shallow,with a depth generally confined to less than 3 km.The mesocyclonic feature was observed to initiate from near-ground level,driven by the interaction between intensifying cold pool surges and shallow lee-side ambient flows.It was first recognized shortly after the presence of near-ground cyclonic convergence signatures over the leading edges of cold pool outflows.Over the subsequent 17 min,the mesocyclone developed upward,reaching a maximum height of 3 km,and produced a tornado 8min later.Nearly coinciding with the time of tornadogenesis,a noticeable separation of the low-level tornado cyclone from the midlevel mesocyclone was observed.This shift in the vertically oriented vortex tube was likely caused by modifications to the low-level flow due to the complex hilly terrain or by occlusions associated with rear-flank downdrafts.After tornadogenesis,high-resolution X-PAR observations revealed that the lowest-level mesocyclonic signature contracted into a gate-to-gate tornadic vortex signature(TVS)at the tip of hook echoes.Compared to conventional S-band operational weather radars,rapid-scan X-PAR observations indicate that a core diameter threshold of 1.5–2 km could be employed to identify a cyclonically sheared radial velocity couplet as a TVS,potentially extending the lead time for Doppler-based tornado warnings.
基金Natural Science Foundation of Fujian Province(2023J011338)Guided Foundation of Xiamen Science and Technology Bureau(3502Z20214ZD4009,3502Z20214ZD4010)+1 种基金Key Projects of East China Phased Array Weather Radar Application Joint Laboratory(EPJL_RP2025010)National Natural Science Foundation of China(41905049)。
文摘In September 2020,a pioneering observational network of three X-band phased-array radars(XPARs)was established in Xiamen,a subtropical coastal and densely populated city in southeastern China.Statistically,this study demonstrated that the XPAR network outperforms single S-band radar in revealing the warm-season convective storms in Xiamen in a fine-scale manner.The findings revealed that convective activity in Xiamen is most frequent in the central and northern mountainous regions,with lower frequency observed in the southern coastal areas.The diurnal pattern of convection occurrence exhibited a unimodal distribution,with a peak in the afternoon.The frequent occurrence of convective storms correlates well in both time and space with the active terrain uplift that occurs when the prevailing winds encounter mountainous areas.Notably,September stands apart with a bimodal diurnal pattern,featuring a prominent afternoon peak and a significant secondary peak before midnight.Further examination of dense rain gauge data in Xiamen indicates that high-frequency areas of short-duration heavy rainfall largely coincide with regions of active convective storms,except for a unique rainfall hotspot in southern Xiamen,where moderate convection frequency is accompanied by substantial rainfall.This anomalous rainfall,predominantly nocturnal,appears less influenced by terrain uplift and exhibits higher precipitation efficiency than daytime rainfall.These preliminary findings offer insights into the characteristics of convection occurrence in Xiamen's subtropical coastal environment and hold promise for enhancing the accuracy of convection and precipitation forecasts in similar environments.
基金supported by the National Natural Science Foundation of China(Nos.52222504 and 52241502)the Natural Science Talents Foundation of Shaanxi Province(No.2021JC-04).
文摘In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved.
基金National Key R&D Program of China(2022YFC3004101)Guangdong Basic and Applied Basic Research Foundation(2023A1515011971)+3 种基金Science and Tech-nology Projects in Guangzhou(2023B04J0232)Science and Technology Development Fund Project of Guangdong Meteor-ological Bureau(GRMC2022Q23,GRMC2022Q01)Jiangmen Basic and Applied Basic Research Key Programs(202312)Science and Technology Development Fund Project of Jiangmen Meteorological Bureau(202008,202004,201907,202007,201704)。
文摘To verify the detection capability of X-band dual-polarization phased-array radar for forest fires,this paper utilizes X-band dual-polarization phased-array radar data,Himawari-8 satellite data,combined with ground meteorological automatic station data.A case study of a forest fire in Ao Feng Mountain on February 19,2021,was conducted to comparatively analyze the monitoring results from these two remote sensing methods.The results show that both methods exhibit significant features associated with the forest fire process observed and are effective modern methods of forest fire monitoring.The Himawari-8 satellite identified the fire point at 07:10(LST;LST=UTC+8)with subsequent observations every 10 minutes until 10:00,nearly two hours before the fire was fully extinguished.Compared with the satellite,the Xband dual polarization phased array radar detectedthe fire 14 minutes earlier,with an improved temporal resolution of one minute,and was not affected by cloud cover.In the triggering stage,vigorous stage,sustained burning stage,and extinguishing stage of the forest fire,radar characteristic factors including reflectivity(Z),differential reflectivity(ZDR),and correlation coefficient(CC)showed strong correlations with the fire progression.The radar monitoring results were continuous,complete,and precise.In summary,the X-band dual-polarization phased-array radar offers more detailed detection information,shorter detection time interval,and higher detection spatial accuracy.It presents a promising new method for forest fire detection,providing crucial guidance for on-site rescue operations,particularly for small-scale fire events.
基金This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB1803000in part by the Major Key Project of Peng Cheng Laboratory,Shenzhen,China,under Project PCL2021A01-2.
文摘This article presents an 8-element dual-polarized phased-array transceiver(TRX)front-end IC for millimeter-wave(mm-Wave)5G new radio(NR).Power enhancement technologies for power amplifiers(PA)in mm-Wave 5G phased-array TRX are discussed.A four-stage wideband high-power class-AB PA with distributed-active-transformer(DAT)power combining and multi-stage second-harmonic traps is proposed,ensuring the mitigated amplitude-to-phase(AM-PM)distortions across wide carrier frequencies without degrading transmitting(TX)power,gain and efficiency.TX and receiving(RX)switching is achieved by a matching network co-designed on-chip T/R switch.In each TRX element,6-bit 360°phase shifting and 6-bit 31.5-dB gain tuning are respectively achieved by the digital-controlled vector-modulated phase shifter(VMPS)and differential attenuator(ATT).Fabricated in 65-nm bulk complementary metal oxide semiconductor(CMOS),the proposed TRX demonstrates the measured peak TX/RX gains of 25.5/21.3 dB,covering the 24−29.5 GHz band.The measured peak TX OP1dB and power-added efficiency(PAE)are 20.8 dBm and 21.1%,respectively.The measured minimum RX NF is 4.1 dB.The TRX achieves an output power of 11.0−12.4 dBm and error vector magnitude(EVM)of 5%with 400-MHz 5G NR FR2 OFDM 64-QAM signals across 24−29.5 GHz,covering 3GPP 5G NR FR2 operating bands of n257,n258,and n261.
文摘AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 males, 19 females) with ages ranging between 29 and 75 who have biopsy proven rectal tumor underwent both MRI and ERUS examinations before surgery. All patients were evaluated to determine the diagnostic accuracy of depth of transmural tumor invasion and lymph node metastases. Imaging results were correlated with histopathological findings regarded as the gold standard and both modalities were compared in terms of predicting preoperative local staging of rectal carcinoma. RESULTS: The pathological T stage of the tumors was: pT1 in 1 patient, pT2 in 9 patients, pT3 in 21 patients and pT4 in 3 patients. The pathological N stage of the tumors was: pN0 in 19 patients, pN1 in 9 patients and pN2 in 6 patients. The accuracy of T staging for MRI was 89.70% (27 out of 34). The sensitivity was 79.41% and the specificity was 93.14%. The accuracy of T staging for ERUS was 85.29% (24 out of 34). The sensitivity was 70.59% and the specificity was 90.20%. Detection of lymph node metastases usingphased-array MRI gave an accuracy of 74.50% (21 out of 34). The sensitivity and specificity was found to be 61.76% and 80.88%, respectively. By using ERUS in the detection of lymph node metastases, an accuracy of 76.47% (18 out of 34) was obtained. The sensitivity and specificity were found to be 52.94% and 84.31%, respectively. CONCLUSION: ERUS and phased-array MRI are complementary methods in the accurate preoperative staging of rectal cancer. In conclusion, we can state that phased-array MRI was observed to be slightly superior in determining the depth of transmural invasion (T stage) and has same value in detecting lymph node metastases (N stage) as compared to ERUS.
基金Key-Area R&D Program of Guangdong Province(2020B1111200001)National Key R&D Program of China(2017YFC1501701)+1 种基金National Natural Science Foundation of China(41875051)Guangzhou Municipal Science and Technology Planning Project(201903010101)
文摘The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.
基金funded by National High-Tech Research and Development Projects (863 Grant No. 2007AA061901)+2 种基金the National Key Program for Developing Basic Sciences (Grant No. 2012CB417202)the National Natural Science Foundation of China (Grant No. 41175038)the Public Welfare Meteorological Special Project (Grant No. GYHY201106046)
文摘An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
基金Project supported by the National Nature Science Foundation of China (Grant No. 30900332)Grant of General Administration of Quality Supervision Inspection and Quarantine of China (Grant No. 201210079)+1 种基金the Program for Science and Technology Department of Zhejiang Province, China (Grant Nos. 2010C14010 and 2010C33172)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y2090966)
文摘In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.
基金the National Natural Science Foundation of China(Grant 11772187)the research project of the Key Laboratory of Infrared System Detection and Imaging Technology of the Chinese Academy of Sciences(Grant CASIR201702)the Natural Science Foundation of Shanghai(Grant 16ZRi436200).
文摘Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.
基金Foundation item:Supported by the National Nature Science Founda-tion of China(50099620)and 863 Program Foundation of China(2001AA132050-03)
文摘According to the frequency property of Phasedarray ground penetrating radar(PGPR),this paper gives a frequency point slice method based on Wigner time-frequency analysis.This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable.At last,the analytical results of road test data of the Three Gorges prove the analytical method efficient.
基金Guangzhou Science and Technology Plan Project(202103000030)Guangdong Meteorological Bureau Science and Technology Project(GRMC2020Z08)a project co-funded by the Development Team of Radar Application and Severe Convection Early Warning Technology(GRMCTD202002)。
文摘The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.
基金supported by Natural Science Foundation of China(NSFC)(Grant No.31727901)。
文摘A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.
基金Supported by the National Nature Science Founda tion of China(50099620)863 Project(2001AA132050-03)
文摘To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method calculates time delay of multi-receivers, basing on the signal of the nearest receiver, then shifts other signals and adds them up, and gets one signal at last. It has been proved that this method can restrain noise, multiple waves, clutter waves and improve the precision of time location. In the end, an example is given to prove the method's efficiency.
基金the National Natural Science Foundation of China(No.30500124)Shanghai Key Technologies R&D Program of China(No.05DZ19509)
文摘A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple loci patterns by electronically changing its amplitude or phase pattern. This method involves using a technique of combining switching and rotating of multiple foei patterns to create a uniform temperature over tissue volumes in various size. Using this method, the target tissue deep in the body can be heated to a specified temperature, which gives conditions for thermo-sensi- tive liposomes release. A simulation study for a 108-element, spherically sectioned array was performed to determine an optimal heating scheme from a set of multiple focus fields which were produced by inputting different combinations of phases and amplitudes. Comparisons of a static multiple foei field, the switched fields and the switched-rotated fields indicated that the technique of combining switching and rotating of multiple foei patterns has advantages of both lowering the peak temperature and evening the temperature distribution. The simulation results also show that the therapeutic heating zones in various size ( Φ5mm ~40mm) with uniform temperature distributions can be obtained employing the combined method. These results offer significant data for desisting thermotherapy equipment for tumor-specific drug release with thermo-sensitive liposomes.
基金Supported by the Joint Fund Project of National Natural Science Foundation of China(U2142210).
文摘Dual-Doppler radar detection and wind-field retrieval techniques are crucial for capturing small-scale structures within convective systems.The spatiotemporal resolution of radar data is a key factor influencing the accuracy of wind-field observations.Recently,an advanced X-band phased-array weather radar system was deployed in Foshan,Guangdong Province,China,comprising a central collaborative control unit and multiple networked phased-array radar front-ends.These radar front-ends work together to scan a common area,achieving a maximum data time difference of 5 s and a volume scan interval of 30 s,thereby providing three-dimensional wind-field data with higher spatiotemporal resolution and greater accuracy than achieved using traditional methods.This study utilized the X-band phased-array weather radar system to analyze the development of a substantial hailstorm that occurred over Foshan on 26 March 2022.Analysis indicated that hail cloud activity intensified considerably after 1442 local time,with the maximum reflectivity factor exceeding 60 dBZ above the altitude of the-20℃ level,and reflectivity continued to increase over the subsequent 12 min.More precise information on the flow-field structure of the storm was obtained by examining the X-band radar data.The temporal and vertical variations in the maximum reflectivity factor,updraft velocity,vertical wind shear,and horizontal wind speed within a hailstorm cloud were scrutinized.The results show that the altitude,intensity,and range of the main updraft area increased as the storm core ascended.Concurrently,the vertical wind shear at mid-lower levels of the storm became more pronounced as the altitude of the strong radar echo center increased prior to the peak of the updraft.Therefore,a new hail warning index was developed by using the vertical wind shear,and the index can be used to issue warnings up to 12 min earlier than achievable using traditional methods detecting increases in hailstorm intensity.
基金This work was supported by the National Natural Science Foundation of China (No. 69990540).
文摘A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.
基金This work was supported by NSFC project(No.61971379)by Zhejiang Provincial NSFC project(No.LY16F010005).
文摘In mobile satellite communication networks employing digital beam forming technology,beam alignment imposes great influence on link quality and network efficiency.Owing to complex coupling motion by low earth orbit(LEO)satellite and ship,direction of arrival(DOA)of target satellite varies rapidly and nonlinearly.It then causes difficulty to accurately track the DOA.In this work,an adaptive tracking algorithm is proposed by exploiting advantages of flexible parameter configuration of digital phased-array antenna.The alignment process basically consists of observation and tracking.In the observation stage,two-dimensional(2-D)multiple signal classification(MUSIC)is applied by the ship-borne digital phased-array antenna to estimate beam direction of satellite;in the tracking stage,an extended Kalman filter(EKF)based adaptive tracking is designed to achieve fast and accurate alignment.The proposed adaptive tracking improves performance by adaptively estimating tracking parameters in EKF firstly.The estimation results are then used as feedback to adaptively adjust digital phased-array antenna parameters to improve estimation accuracy of DOA.Simulation results under sea state 5 show that the proposed tracking algorithm improves tracking accuracy and stability over conventional ones.
基金supported by the National Natural Science Foundation of China(40804020)Natural Science Foundation of Shandong(ZR2011DQ020)
文摘Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through casing.The full waveforms are measured with different cement bonding models.By analyzing the measured wavetrains and the time-slowness correlation graphs,it is showed that when the generation conditions of the refracted compressional wave and the refracted shear wave are reached successively by regulating the direction of acoustic beam radiated from the linear phased-array transmitter,steered angle of the main radiation lobe with both good bonding interfaces.The refracted compressional wave and the refracted shear wave can be stimulated obviously and the casing wave can be suppressed effectively,even when the casing and cement(or the cement and formation) is not bonded.Based on these observations, it is worthwhile to apply the linear phased-array transmitter to determine formation velocities,particularly in poorly bonded cased well.The works establish the experimental and theoretical foundation for new generation cased-hole acoustic logging tool development.