期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Real‑time Phase Prediction Network in EEG Rhythm
1
作者 Hao Liu Zihui Qi +4 位作者 Yihang Wang Zhengyi Yang Lingzhong Fan Nianming Zuo Tianzi Jiang 《Neuroscience Bulletin》 2025年第3期391-405,共15页
Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because t... Closed-loop neuromodulation,especially using the phase of the electroencephalography(EEG)rhythm to assess the real-time brain state and optimize the brain stimulation process,is becoming a hot research topic.Because the EEG signal is non-stationary,the commonly used EEG phase-based prediction methods have large variances,which may reduce the accuracy of the phase prediction.In this study,we proposed a machine learning-based EEG phase prediction network,which we call EEG phase prediction network(EPN),to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data.We verified the performance of EPN on pre-recorded data,simulated EEG data,and a real-time experiment.Compared with widely used state-of-the-art models(optimized multi-layer filter architecture,auto-regress,and educated temporal prediction),EPN achieved the lowest variance and the greatest accuracy.Thus,the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation. 展开更多
关键词 Real-time EEG phase prediction Closedloop neuromodulation EEG phase-triggered regulation EEG rhythm TMS-EEG co-registration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部