Phenol is an important raw material.The pre-sent industrial method of a multistep and indirect syn-thesis of phenol from benzene has the disadvantages of a long synthetic route,large consumption of raw ma-terial and s...Phenol is an important raw material.The pre-sent industrial method of a multistep and indirect syn-thesis of phenol from benzene has the disadvantages of a long synthetic route,large consumption of raw ma-terial and serious environment pollution.The direct oxidization of benzene to phenol under mild conditions is being sought for researches[1~3].The reaction-con-trolled phase-transfer catalyst[4-6]developed recently is a kind of environmentally friendly catalyst.The re-action-controlled phase-transfer catalyst can be recov-ered,like a heterogeneous catalyst,but also acts as a homogeneous catalyst.The reaction-controlled phase-transfer catalyst possesses the above advantages and it is significant to design and synthesize such a catalyst,but there have been few reports concerning the prepa-ration of this kind of catalysts.展开更多
A highly effective and mild protocol for ring opening of epoxides with NH4SCN in the presence of catalytic amount of a multi- site phase-transfer catalyst, α,α',α"-N-hexakis(triethylammoniummethylene chloride)-...A highly effective and mild protocol for ring opening of epoxides with NH4SCN in the presence of catalytic amount of a multi- site phase-transfer catalyst, α,α',α"-N-hexakis(triethylammoniummethylene chloride)-melamine, is developed. A variety of ^-hydroxy thiocyanates as important intermediates in agricultural and pharmaceutical chemistry were obtained in high yields with excellent regioselectivity and in short reaction times. 2009 Ali Reza Kiasat. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A new reaction-controlled phase-transfer catalyst system was designed and synthesized. In this system, heteropolytungstate [C7H7N(CH3)3]9PW9O34 was used for catalytic epoxidation of cyclohexene with H2O2 as the oxida...A new reaction-controlled phase-transfer catalyst system was designed and synthesized. In this system, heteropolytungstate [C7H7N(CH3)3]9PW9O34 was used for catalytic epoxidation of cyclohexene with H2O2 as the oxidant. The conversion of H2O2 was 100% and the yield of cyclohexene oxide was 87.1% based on cyclohexene. Infrared spectra showed that both fresh catalyst and the recovered catalyst do have completely same absorption peak, indicating the structure of catalyst is very stability and can be recycled.展开更多
A new series of chiral phase-transfer catalysts 7a-7h were designed and synthesized from L-proline with moderate to good yields.'The catalytic activity of 7a-Th for the asymmetric alkylation of glycine Schiff bases w...A new series of chiral phase-transfer catalysts 7a-7h were designed and synthesized from L-proline with moderate to good yields.'The catalytic activity of 7a-Th for the asymmetric alkylation of glycine Schiff bases was evaluated, and some interesting relationships between structure and catalytic activity were revealed.展开更多
Using 4-Dialkylaminopyridinium salt as a thermal stable phase-transfer catalyst (PTC), the excellent results were obtained in the halogen-exchange fluorination.
A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the pr...A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.展开更多
Ionic liquids (ILs) based on 1,3-dialkylimidazolium and tetraalkylammonium cations were employed as a series of efficient, environmentally benign phase-transfer catalysts (PTCs) for the base-promoted monoalkylatio...Ionic liquids (ILs) based on 1,3-dialkylimidazolium and tetraalkylammonium cations were employed as a series of efficient, environmentally benign phase-transfer catalysts (PTCs) for the base-promoted monoalkylation of diethyl malonate. The influence of various heterogeneous bases on yields was studied. Good yields and high selectivity were obtained. Solvent-free, mild reaction condition, short reaction time, and easy purification were the merits of this method. The catalytic system (IL-hase) could also be recycled after the extraction of products with ether.展开更多
A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the...A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.展开更多
A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as t...A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant. Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxi- dation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidatio...Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidation of α, β-enones, showing a moderate level of asymmetric induction.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit...Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera...The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha...To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.展开更多
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A...NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.展开更多
文摘Phenol is an important raw material.The pre-sent industrial method of a multistep and indirect syn-thesis of phenol from benzene has the disadvantages of a long synthetic route,large consumption of raw ma-terial and serious environment pollution.The direct oxidization of benzene to phenol under mild conditions is being sought for researches[1~3].The reaction-con-trolled phase-transfer catalyst[4-6]developed recently is a kind of environmentally friendly catalyst.The re-action-controlled phase-transfer catalyst can be recov-ered,like a heterogeneous catalyst,but also acts as a homogeneous catalyst.The reaction-controlled phase-transfer catalyst possesses the above advantages and it is significant to design and synthesize such a catalyst,but there have been few reports concerning the prepa-ration of this kind of catalysts.
基金the partial support of this work by Shahid Chamran Research Council
文摘A highly effective and mild protocol for ring opening of epoxides with NH4SCN in the presence of catalytic amount of a multi- site phase-transfer catalyst, α,α',α"-N-hexakis(triethylammoniummethylene chloride)-melamine, is developed. A variety of ^-hydroxy thiocyanates as important intermediates in agricultural and pharmaceutical chemistry were obtained in high yields with excellent regioselectivity and in short reaction times. 2009 Ali Reza Kiasat. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘A new reaction-controlled phase-transfer catalyst system was designed and synthesized. In this system, heteropolytungstate [C7H7N(CH3)3]9PW9O34 was used for catalytic epoxidation of cyclohexene with H2O2 as the oxidant. The conversion of H2O2 was 100% and the yield of cyclohexene oxide was 87.1% based on cyclohexene. Infrared spectra showed that both fresh catalyst and the recovered catalyst do have completely same absorption peak, indicating the structure of catalyst is very stability and can be recycled.
基金National Natural Science Foundation of China (Grant No. 20802004)
文摘A new series of chiral phase-transfer catalysts 7a-7h were designed and synthesized from L-proline with moderate to good yields.'The catalytic activity of 7a-Th for the asymmetric alkylation of glycine Schiff bases was evaluated, and some interesting relationships between structure and catalytic activity were revealed.
基金the Natural Science Foundation of Zhejiang Province (No. 299024).
文摘Using 4-Dialkylaminopyridinium salt as a thermal stable phase-transfer catalyst (PTC), the excellent results were obtained in the halogen-exchange fluorination.
文摘A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.
文摘Ionic liquids (ILs) based on 1,3-dialkylimidazolium and tetraalkylammonium cations were employed as a series of efficient, environmentally benign phase-transfer catalysts (PTCs) for the base-promoted monoalkylation of diethyl malonate. The influence of various heterogeneous bases on yields was studied. Good yields and high selectivity were obtained. Solvent-free, mild reaction condition, short reaction time, and easy purification were the merits of this method. The catalytic system (IL-hase) could also be recycled after the extraction of products with ether.
文摘A new catalytic process for the synthesis of aldehyde from alcohol by oxidation with H202 with high selectivity, was studied. In this system, heteropolymolybdate [C7H7N(CH3)3]3 {PO4[MoO(O2)2]4} was utilized as the reaction-controlled phase-transfer catalyst to catalyze oxidation of benzyl and aliphatic alcohols. The molar ratio of H2O2 and alcohol was 0.75, no other by-products were detected by gas chromatography, the results of oxidation reaction indicated that the catalyst has high activity and stability.
基金Project supported by the National Natural 863 Plan of China (No. 2001AA33440203).
文摘A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant. Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxi- dation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidation of α, β-enones, showing a moderate level of asymmetric induction.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
基金supported by National Natural Science Foundation of China(22178258,22308254)China Postdoctoral Science Foundation(2023M742593,2024T170642)+1 种基金Independent Innova-tion Fund of Tianjin University(2024XQM-0021)the Open Fund of the Key Laboratory of Functional Molecular Solids(FMS2023006)。
文摘Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
文摘The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
文摘To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.
基金supported by the National Natural Science Foundation of China(Nos.22276182 and 22188102)the Natural Science Foundation of Fujian Province,China(No.2023J06048)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021303).
文摘NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.