期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailoring an Fe-Ov-Ce-Triggered Phase-Reversible Oxygen Carrier for Intensified Chemical Looping CO_(2)Splitting
1
作者 Zhao Sun Kun Lei +7 位作者 Louise R.Smith Nicholas F.Dummer Richard J.Lewis Haifeng Qi Kieran J.Aggett Stuart H.Taylor Zhiqiang Sun Graham J.Hutchings 《Carbon Energy》 2025年第9期1-13,共13页
Advanced oxygen carrier plays a pivotal role in various chemical looping processes,such as CO_(2)splitting.However,oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temper... Advanced oxygen carrier plays a pivotal role in various chemical looping processes,such as CO_(2)splitting.However,oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures.Herein,we design an Fe-Ov-Ce-triggered phase-reversible CeO_(2)−x·Fe·CaO↔CeO_(2)·Ca_(2)Fe_(2)O_(5)oxygen carrier with strong electron-donating ability,which activates CO_(2)at low temperatures and promotes oxygen transformation.Results reveal that the maximum CO_(2)conversion and CO yield obtained with 50 mol%CeO_(2)−x·Fe·CaO are,respectively,426%and 53.6 times higher than those of Fe·CaO at 700℃.This unique multiphase material also retains exceptional redox durability,with no obvious deactivation after 100 splitting cycles.The addition of Ce promotes the formation of the Fe-Ov-Ce structure,which acts as an activator,triggers CO_(2)splitting,and lowers the energy barrier of C═O dissociation.The metallic Fe plays a role in consuming O_(2)−lattice transformed from Fe-Ov-Ce,whereas CaO acts as a structure promoter that enables phase-reversible Fe0↔Fe3+looping. 展开更多
关键词 chemical looping CO_(2)splitting electron-donating phase-reversible oxygen carrier
在线阅读 下载PDF
Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes
2
作者 Ning Ding Gepu Guo +2 位作者 Juan Tu Dong Zhang Qingyu Ma 《Engineering》 2025年第4期139-151,共13页
Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pr... Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams,it remains challenging to create two-dimensional(2D)neighboring vortexes using a source array in practical applications.In this paper,a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes(OA-AVs)with a preset radial offset is proposed based on a ring array of planar sources.By introducing initial vortex phase differences of-2π/M and+2π/M to the vortex array,low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs.Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs.The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach.The field evolution is certified by experimental field measurements for OA-AVs with different vo rtex numbers,initial vortex phase differences,and radial offsets using a ring array of 16 planar sources.The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon,a four-branched star,and a central AV in experiments.The three-step strategy paves a new way for 2D particle assembly based on the synchronize d evolution of centrosymmetric OA-AVs using a simplified single-sided source array,exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications. 展开更多
关键词 Centrosymmetric array of off-axis acoustic vortexes phase-reversal strategy Initial phase difference Particle assembly Single-sided ring array
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部