期刊文献+
共找到181,736篇文章
< 1 2 250 >
每页显示 20 50 100
In situ atomic-scale observation of size-dependent (de) potassiation and reversible phase transformation in tetragonal FeSe anodes 被引量:1
1
作者 Ran Cai Lixia Bao +12 位作者 Wenqi Zhang Weiwei Xia Chunhao Sun Weikang Dong Xiaoxue Chang Ze Hua Ruiwen Shao Toshio Fukuda Zhefei Sun Haodong Liu Qiaobao Zhang Feng Xu Lixin Dong 《InfoMat》 SCIE CAS CSCD 2023年第1期161-171,共11页
Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the explo... Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs. 展开更多
关键词 elucidated by geometric phase analysis and finite-element analysis. Despite the different intercalation behaviors the formed products of Fe and K 2 Se after full potassiation can be converted back into the original FESE phase upon depotassiation. In particular small-sized nanoflakes exhibit better cycling perfor- mance with well-maintained structural integrity. This article presents the first successful demonstration of ATOMIC-SCALE visualization that can reveal size- dependent potassiation dynamics. Moreover it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs. KEYWOR DS in situ transmission electron microscopy potassium-ion batteries potassium-ion storage mechanism SIZE-DEPENDENT effects TETRAGONAL FESE
原文传递
Wigner Quasiprobability with an Application to Coherent Phase States
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2018年第6期564-614,共51页
Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical va... Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations. 展开更多
关键词 Parity Operator Quantum Square Well COHERENT STATES SU (1 1) Group and REALIZATIONS Glauber-Sudarshan and Husimi-Kano Quasiprobability London phase STATES phase Distribution Unorthodox Entire Function Laguerre 2D Polynomials Generalized Eulerian Numbers
在线阅读 下载PDF
In-situ observations on interphase boundary migration and grain growth during α/γ phase transformation in iron-4.2%Cr alloy
3
作者 渡边忠雄 OBARA Kouichi TSUREKAWA Sadahiro 《材料与冶金学报》 CAS 2005年第2期91-91,共1页
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo... In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation. 展开更多
关键词 In-situ phase velocity stage effects crystal with random origin the range after new was more play over high MOST for The to DID BCC It be
在线阅读 下载PDF
Illusion Optics via Phase-Gradient Metasurfaces
4
作者 haoyao Pan Jinpeng Yang Yadong Xu 《Chinese Physics Letters》 2026年第1期31-36,共6页
Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with pha... Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices. 展开更多
关键词 transformation optics anomalous diffraction law illusion opticsfeaturing flexible light manipulationwith illusion optics anomalous diffraction phase gradient modulation phase gradient metasurfaces
原文传递
Phase-Transition Energies, New Characterization of Solid Materials and Anisotropy 被引量:2
5
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2019年第4期57-70,共14页
Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically found... Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically founded normal force ?depth3/2 relation. The precise transition onset position is obtained by linear regression of the FN = kh3/2 plot, where k is the penetration resistance, which also provides the axis cuts of both polymorphs of first order phase transitions. The phase changes can be endothermic or exothermic. They are normalized per μN or mN normal load. The analyses of indentation loading curves with self-similar diamond indenters are used as validity check of the loading curves, also from calibration standards that exhibit previously undetected phase-transitions and are thus incorrect. The phase-transition energies for fused quartz are determined from the loading curves from instrument provider handbooks. The anisotropic behavior of phase transition energies is studied for the first time. Quartz is a useful test object. The reasons for the packing-dependent differences are discussed on the basis of the local crystal structure under and around the inserting tip. 展开更多
关键词 Instrumented Indentation Loading Curve phase Transition Onset and ENERGY Iteration-Less PLOT PHYSICAL EXPONENT Present ISO Standard ENERGY Law VIOLATIONS PHYSICAL Hardness Error Detections
在线阅读 下载PDF
Fault Tolerant Three-Phase AC Motor Drive Topologies: A Comparison of Features, Cost, and Limitations
6
《变频器世界》 2005年第3期29-30,共2页
A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant t... A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant topology and is shown in Fig.5.This topology incorporates four TRIACs or back-to-back connected SCRs and three fast acting fuses.The fuses are connected in series with the load phases.Since this topology is a combination of topologies and control methods to accommodate an opened phase,and a shorted switch,they will be considered separately. 展开更多
关键词 FAULT Drive standard control To series switch FAULT phase fast with load the to ADD for was The are be is in
在线阅读 下载PDF
Towards Economic Single-Phase Motor
7
作者 Mahdi Alshamasin 《Energy and Power Engineering》 2013年第9期528-536,共9页
Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor perf... Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor performance by balancing the stator phase operation for the most common-used connection diagrams of single-phase capacitor-run induction motors (SPCRIMs) and three-phase induction motors (TPIMs) operating from single-phase supply (SPS). Therefore, a mathematical model is used to balance the motor operation by varying the frequency supply voltage. Characteristics of balancing parameters are investigated, various methods of motor balancing are presented and comparisons were done among these balancing methods. 展开更多
关键词 Performance of Capacitor-Run MOTOR Main phase BALANCED Operation SYMMETRY Connection Circuit DIAGRAMS Control of Balancing Parameters Reactive Elements Power Factor Efficiency
暂未订购
A Synchronized Grid Integrated Three-Phase Inverter with a Renewable Source for Power Sharing 被引量:1
8
作者 Zuhair Alqarni Johnson A. Asumadu 《Journal of Power and Energy Engineering》 2020年第3期88-101,共14页
In this paper, a three-phase inverter with renewable source input is integrated into a grid in synchronization for power sharing by load. In previous topologies, the DC source connected inverter is not synchronized to... In this paper, a three-phase inverter with renewable source input is integrated into a grid in synchronization for power sharing by load. In previous topologies, the DC source connected inverter is not synchronized to the grid which causes harmonics and voltage distortions damaging the load and the source. In order to ensure power sharing by the load from the inverter and the grid, the inverter needs to be operated in synchronization to the grid with the same voltage mag-nitude, frequency and phase as that of the grid voltage. In this paper, the com-plete power from the load is shared by the three-phase grid and the three-phase inverter module reducing the consumption from the conventional grid. This is achieved using the PLL for the reference angular frequency generation with feedback from grid voltage and is connected to the sinusoidal PWM generator. The PLL is used to generate unit vector template reference signals for the signal generator operating the six-switch inverter. The inverter and grid are inter-connected through LC filter for the reduction of harmonics. The power sharing, voltage, and current graphs with THD analysis are analyzed with the help of the MATLAB software. 展开更多
关键词 PLL (phase Locked Loop) LC (Inductor Capacitor) Filter PWM (Pulse WIDTH Modulation) THD (Total Harmonic Distortion) MATLAB (Matrix Laboratory)
在线阅读 下载PDF
A Phase II Study of Antineoplastons A10 and AS2-1 in Children with Recurrent, Refractory or Progressive Primary Brain Tumors—Final Report (Protocol BT-22) 被引量:11
9
作者 Stanislaw R. Burzynski Tomasz J. Janicki +2 位作者 Gregory S. Burzynski Ania Marszalek Sheldon Brookman 《Journal of Cancer Therapy》 2014年第10期977-988,共12页
Primary malignant brain tumors are a leading cause of cancer-related death in children. This Phase II study evaluated the efficacy and safety of Antineoplastons A10 and AS2-1 (ANP) in children who developed progressio... Primary malignant brain tumors are a leading cause of cancer-related death in children. This Phase II study evaluated the efficacy and safety of Antineoplastons A10 and AS2-1 (ANP) in children who developed progression during standard treatment. A total of 43 children were recruited to the study, but only 41 met eligibility criteria. There were twelve cases of glioblastoma multiforme (GBM), eight anaplastic astrocytomas (AA), twelve diffuse intrinsic pontine gliomas (DIPG), three supertentorial primitive neuroectodermal tumors (sPNET), three cases of medulloblastoma and one case each of anaplastic ependymoma (AE), atypical teratoid rhabdoid tumor (AT/RT), and disseminated pilocytic astrocytoma (PAD). ANP was administered intravenously daily every four hours (median dose of A10 8.74 g/kg/d and AS2-1 0.35 g/kg/d), until objective response (OR) was documented, and then a further eight months. All enrolled patients were included in safety, but only eligible patients in the efficacy evaluation. A total of 12.2% of patients obtained OR;2.4% complete response (CR) and 9.8% partial response (PR). Stable disease (SD) was determined in 17.1% and progressive disease (PD) in 43.9% of cases. There were 26.8% of nonevaluable (NE) cases due to premature discontinuation. Out of five OR cases, four patients were diagnosed with recurrent DIPG and one with recurrent AA. Median progression-free survival (PFS) was 2.5 months. Median overall survival was 4.8 months. OS at 6 months was 46.3%, one year was 12.2%, and 4.8% at two, five, and ten years. The longest survivor is a patient diagnosed with DIPG and gliosarcoma who remains alive more than 15 years. A group of eleven patients reported grade 3 and 4 toxicity including hypernatremia in eight cases, somnolence in two cases, and hypokalemia in one case. There were no chronic toxicities, and the quality of life was very good. The largest group of patients were represented by DIPG, GBM, and AA. The best results were obtained in the DIPG and AA groups. In the DIPG group, CR was in 8.3%, PR was 25%, median PFS was 4.8 months, median OS was 6.1 months, and OS at 6 months was 58.3%, at one year 25%, and 8.3% at two, five, and ten years. In the AA group, PR was 12.5%, median PFS was 3.7 months, median OS was 4.7 months, and OS at 6 months was 37.5%, and 12.5%, at one, two, five, and ten years. In conclusion, antineoplastons showed efficacy and acceptable toxicity in patients with recurrent, refractory or progressive primary brain tumors. 展开更多
关键词 Anaplastic Astrocytoma Antineoplastons A10 and AS2-1 Brainstem GLIOMA Diffuse Intrinsic PONTINE GLIOMA (DIPG) GLIOSARCOMA phase II Clinical Trial RECURRENT GLIOMA
暂未订购
Non Destructive 3D, 4D Microscopy and Mineral Phase Characterization in Industrial Minerals, Composites to Construction Materials
10
作者 S H Lau Arno Merkle +3 位作者 Susan Candell Sylvia Yun Allen Gu Wenbing Yun 《矿物学报》 CAS CSCD 北大核心 2013年第S1期77-77,共1页
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall... Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few. 展开更多
关键词 3D and 4D MICROSCOPY in SITU CHARACTERIZATION MINERAL phase DISCRIMINATION Dual Energy X-ray Tomography industrial MINERALS gemstone construction materials
原文传递
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
11
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
在线阅读 下载PDF
Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents 被引量:5
12
作者 SUN Zhe WU Xingcai +4 位作者 KANG Xiaodong LU Xiangguo LI Qiang JIANG Weidong ZHANG Jing 《Petroleum Exploration and Development》 2019年第1期121-129,共9页
To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase... To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results. 展开更多
关键词 POLYMER FLOODING particle-type POLYMER POLYMER water dispersion PARTICLE phase separation microfluidic technology deep fluid DIVERSION ABILITY oil DISPLACEMENT mechanism
在线阅读 下载PDF
High Electrical Conductivity and Conspicuous Phase Transitions in Single Crystals of K-TCNQ
13
作者 Yadunath Singh 《Advances in Materials Physics and Chemistry》 2017年第11期375-394,共20页
This paper is to report the temperature dependent electrical conductivity of single crystals of radical ion salt (RIS) potassium-TCNQ (K-tetracyanoquino- dimethane) in a wide range of temperatures from 30 to 500 K. Th... This paper is to report the temperature dependent electrical conductivity of single crystals of radical ion salt (RIS) potassium-TCNQ (K-tetracyanoquino- dimethane) in a wide range of temperatures from 30 to 500 K. This RIS is quasi-one-dimensional in nature. These single crystals of K-TCNQ are grown by different methods like electrochemical, solution growth and diffusion method. Activation energy is determined for the sample in different temperature regions and found different values. More than one semiconductor to metal phase transition is observed in the studied samples during electrical measurements below and above room temperature. All the features observed in the studied samples are analyzed in the framework of their molecular structure as well as under different effects like disorder, impurity, Coulomb interaction, charge density wave (CDW), scattering and 3-D effects etc. 展开更多
关键词 Electrical Conductivity RADICAL Ion Salt TETRACYANOQUINODIMETHANE CHARGE Density Wave CHARGE Transfer Complexes A Semiconductor to a Metal phase Transition
在线阅读 下载PDF
Light-Front Hamiltonian, Path Integral and BRST Formulations of the Chern-Simons-Higgs Theory in the Broken Symmetry Phase
14
作者 Usha Kulshreshtha Daya S. Kulshreshtha James P. Vary 《Journal of Modern Physics》 2013年第4期38-48,共11页
In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where... In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing. 展开更多
关键词 LIGHT-FRONT QUANTIZATION HAMILTONIAN QUANTIZATION Path Integral QUANTIZATION BRST QUANTIZATION Constrained Dynamics Gauge SYMMETRY Chern-Simons-Higgs Theory Broken SYMMETRY phase HIGGS Potential Spontaneous SYMMETRY Breaking
在线阅读 下载PDF
First Order Phase Transitions as Radiation Processes, Part Two 被引量:1
15
作者 Vitali A. Tatartchenko Pavel V. Smirnov Hongrong Jin 《Optics and Photonics Journal》 2014年第2期26-37,共12页
This paper presents new experimental results concerning the PeTa effect—infrared characteristic radiation under first order phase transitions, especially during deposition and condensation of vapours/gases and the cr... This paper presents new experimental results concerning the PeTa effect—infrared characteristic radiation under first order phase transitions, especially during deposition and condensation of vapours/gases and the crystallisation of melts. The abbreviation “PeTa effect” means Perel’man-Tatartchenko’s effect. The nature of the PeTa effect is transient radiation that a particle (i.e., atom, molecule or/and cluster) emits during a transition from a meta-stable higher energetic level (in a super-cooled melt or super-saturated vapour) to the stable condensed lower level (in a crystal or liquid). The radiation removes latent heat with photons of characteristic frequencies that are generated under this transition. This paper is the second in a set describing the appearance of PeTa radiation under air cooling with deposition and condensation of air components. The radiation was recorded using an IR Fourier Spectrometer with a highly sensitive MCT detector. Certain peculiarities of the recorded radiation as well as its applications in the physics of the atmospheres of Earth and Jupiter are analysed. 展开更多
关键词 PeTa EFFECT First Order phase TRANSITIONS VAPOUR CONDENSATION VAPOUR Deposition Melt Crystallisation Infrared RADIATION Atmospheric Phenomena Igloo EFFECT JUPITER
暂未订购
DESIGN AND ANALYSIS OF MULTI-STEP AMPLITUDE QUANTIZATION WEIGHTED 2-D SOLID-STATE ACTIVE PHASED ARRAY ANTENNAS
16
作者 高铁 李建新 郭燕昌 《Journal of Electronics(China)》 1994年第1期71-78,共8页
An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aper... An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated. 展开更多
关键词 SOLID-STATE active phased array antenna MULTI-STEP AMPLITUDE QUANTIZATION Low SIDELOBE AMPLITUDE and phase errors Gain loss Failure
在线阅读 下载PDF
Phase Transformation Behavior and Smart Applications of Shape Memory Alloys
17
作者 Jiao Luo 《控制工程期刊(中英文版)》 2025年第2期7-11,共5页
Shape memory alloys(SMAs)are unique materials that exhibit the ability to recover their original shape upon heating after being deformed at low temperatures.Due to their remarkable properties,such as high strength,exc... Shape memory alloys(SMAs)are unique materials that exhibit the ability to recover their original shape upon heating after being deformed at low temperatures.Due to their remarkable properties,such as high strength,excellent fatigue resistance,and the ability to undergo significant recoverable deformation,SMAs have found extensive applications in various fields,including biomedical devices,robotics,aerospace,automotive industries,and smart textiles.This paper provides a comprehensive overview of the phase transformation behavior and smart applications of SMAs,focusing on the underlying mechanisms,characteristics,and technological advancements in SMA-based devices.It explores the various phases involved in SMA behavior,including the martensitic and austenitic phases,thermoelastic transformations,and stress-induced phase transformations.Furthermore,this paper discusses the applications of SMAs in smart technologies,including their use in medical devices,actuators,sensors,and energy harvesting systems.By exploring the key factors influencing phase transformations,this study highlights the potential of SMAs in designing next-generation smart materials and systems. 展开更多
关键词 Shape Memory Alloys phase Transformation Martensitic phase Austenitic phase Smart Applications Biomedical Devices Actuators SENSORS Energy Harvesting
在线阅读 下载PDF
Realization of Highly Reliable 10-20-Level Instability Optical Phase Transmission over a 1402-Kilometer Commercial Fiber-Optic Network
18
作者 Yang Xu Libo Li +5 位作者 Kan Zhao Pingan Ma Zhiwei Zhang Qi Shen Faxi Chen Haifeng Jiang 《Chinese Physics Letters》 2025年第12期84-88,共5页
Optical phase transfer via fiber optics is the most effective method for optical frequency standard comparison on the scale below thousands of kilometers.However,the monotonic phase discrimination range of conventiona... Optical phase transfer via fiber optics is the most effective method for optical frequency standard comparison on the scale below thousands of kilometers.However,the monotonic phase discrimination range of conventional optical phase-locked loops is limited,and link delays restrict the control bandwidth,which makes it a challenge to achieve a continuously reliable optical link.This paper presents an event-timing-based phase detection method that overcomes the monotonic phase discrimination range limitation of conventional phase-locked loops through dual-edge timestamp recording,achieving an optical phase measurement resolution on the order of 10 attoseconds.With such a technique,we established a 7-segment-cascaded optical link over 1402km of commercial fiber while sharing dense wavelength division multiplexing(DWDM)channels with live telecom traffic.The system maintained continuous operation for 11.7 days without phase cycle slips despite encountering 15 km aerial fiber noise up to 21000 rad^(2)·Hz^(−1)·km^(−1)at 1 Hz.Relative instabilities of the link are 3.7×10^(−15)at 1 s and 3.9×10^(−20)at 100000 s. 展开更多
关键词 fiber optics optical phase locked loops optical phase transfer event timing based phase detection link delays commercial fiber optic network optical frequency standard comparison monotonic phase discrimination range
原文传递
A Thermal-Hydraulic Coolant Channel Module (CCM) for Single- and Two-Phase Flow
19
作者 Alois Hoeld 《Applied Mathematics》 2015年第12期2014-2044,共31页
A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Regio... A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is presented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. This purpose derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to it, a direct procedure could be established with the objective to simulate in an as general as possible way the steady state and transient behaviour of characteristic parameters of single- and/or (now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant channels. Their validity could be confirmed by a wide range of verification and validation runs, showing very satisfactory results. The resulting universally applicable code package CCM should provide a fundamental element for the simulation of thermal-hydraulic situations over a wide range of complex systems (such as different types of heat exchangers and steam generators as being applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores etc). Thereby the derived set of equations for different coolant channels (distinguished by their key numbers) as appearing in these systems can be combined with other ODE-s and non-linear algebraic relations from additional parts of such an overall model. And these can then to be solved by applying an appropriate integration routine. Within the solution procedure, however, mathematical discontinuities can arise. This due to the fact that along such a coolant channel transitions from single- to two-phase flow regimes and vice versa could take place. To circumvent these difficulties it will in the presented approach be proposed that the basic coolant channel (BC) is subdivided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a single or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and after applying a “modified finite volume method” together with other special activities the fundamental set of non-linear thermal-hydraulic partial differential equations together with corresponding constitutive relations can be solved for each SC separately. As a result of such a spatial discretization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential equations of 1st order could be established. Obviously, special attention had to be given to the varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture levels along the channel. Including even the possibility of SC-s to disappear or be created anew during a transient. 展开更多
关键词 Applied Mathematics NON-LINEAR Partial Differential Equations of First Order THERMAL-HYDRAULICS of Single- and TWO-phase Flow Separate-Region Mixture-Fluid Model Concept
暂未订购
Performance analysis of 20 Pole 1.5 KW Three Phase Permanent Magnet Synchronous Generator for low Speed Vertical Axis Wind Turbine 被引量:2
20
作者 Shahrukh Adnan Khan Rajprasad K. Rajkumar +1 位作者 Rajparthiban K. Rajkumar Aravind CV 《Energy and Power Engineering》 2013年第4期423-428,共6页
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati... This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed. 展开更多
关键词 Vertical Axis WIND TURBINE Three phase Multi-pole PERMANENT MAGNET SYNCHRONOUS Generator Low WIND Speed Modeling Performance Analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部