Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the explo...Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.展开更多
Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical va...Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations.展开更多
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo...In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.展开更多
1.Introduction Phase Ⅱ trials are typically designed to identify promising treatment therapies that warrant further investigation in subsequent phase Ⅲ con-firmatory trials,playing a vital role in evidence generatio...1.Introduction Phase Ⅱ trials are typically designed to identify promising treatment therapies that warrant further investigation in subsequent phase Ⅲ con-firmatory trials,playing a vital role in evidence generation of drug de-velopment.The basic design features of phase II trials include interim go/no-go decisions to prevent exposing too many patients to poten-tially ineffective treatments.Appropriate go/no-go decisions and effi-cient trial designs can shorten the research duration and increase trial success rates.展开更多
A longstanding discrepancy between theoretical predictions and experimental observations on the highpressurestructural transformations of lanthanum mononitride(LaN)has posed challenges for understandingthe behavior of...A longstanding discrepancy between theoretical predictions and experimental observations on the highpressurestructural transformations of lanthanum mononitride(LaN)has posed challenges for understandingthe behavior of heavy transition metal mononitrides.Here,we systematically investigate the structural evolutionof LaN under high pressure using first-principles calculations combined with angle-dispersive synchrotron X-raydiffraction,identifying the phase transition sequence and corresponding phase boundaries.Analyses of energetics,kinetic barriers,and lattice dynamics reveal distinct mechanisms driving these transitions.These results clarifythe structural stability of LaN and offer guidance for studying other heavy transition metal mononitrides withcomplex electronic behavior under extreme conditions.展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically found...Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically founded normal force ?depth3/2 relation. The precise transition onset position is obtained by linear regression of the FN = kh3/2 plot, where k is the penetration resistance, which also provides the axis cuts of both polymorphs of first order phase transitions. The phase changes can be endothermic or exothermic. They are normalized per μN or mN normal load. The analyses of indentation loading curves with self-similar diamond indenters are used as validity check of the loading curves, also from calibration standards that exhibit previously undetected phase-transitions and are thus incorrect. The phase-transition energies for fused quartz are determined from the loading curves from instrument provider handbooks. The anisotropic behavior of phase transition energies is studied for the first time. Quartz is a useful test object. The reasons for the packing-dependent differences are discussed on the basis of the local crystal structure under and around the inserting tip.展开更多
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]...1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were deter...The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were determined.The complete phase diagrams,binodal curve diagrams,and tie-line diagrams were all plotted.Results show that both solid-liquid equilibria and liquid-liquid equilibria relationships at each studied temperature.The complete phase diagrams at 288.2 K,298.2 K and 308.2 K consist of six phase regions:unsaturated liquid region(L),two saturated solutions with one solid phase of RbCl(L_S),one saturated liquid phase with two solid phases of PEG6000 and RbCl(2S+L),an aqueous two-phase region(2L),and a region with two liquids and one solid phase of RbCl(2L_S).With the increase in temperature,the layering ability of the aqueous two-phase system increases,and both regions(2L)and(2L_S)increase.The binodal curves were fitted using the nonlinear equations proposed by Mistry,Hu,and Jayapal.Additionally,the tie-line data were correlated with the Othmer-Tobias,Bancroft,Hand,and Bachman equations.The liquid-liquid equilibria at 288.2 K,298.2 K and 308.2 K were calculated using the NRTL model.The findings confirm that the experimental and calculated values are in close agreement,demonstrating the model’s effectiveness in representing the system’s behavior.展开更多
Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant t...A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant topology and is shown in Fig.5.This topology incorporates four TRIACs or back-to-back connected SCRs and three fast acting fuses.The fuses are connected in series with the load phases.Since this topology is a combination of topologies and control methods to accommodate an opened phase,and a shorted switch,they will be considered separately.展开更多
Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulf...Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4].展开更多
Exercise is established as a supportive care intervention during and after various cancer treatment modalities.1,2 Documented benefits include improvements in health-related fitness,physical functioning,some symptoms/...Exercise is established as a supportive care intervention during and after various cancer treatment modalities.1,2 Documented benefits include improvements in health-related fitness,physical functioning,some symptoms/side effects,psychosocial functioning,and quality of life.1,2 Exercise has not been established,however,as a treatment for any type of cancer in any clinical oncology setting.2 This special topic of the Journal of Sport and Health Science(JSHS)is dedicated to research on“Exercise as a cancer treatment”.The special topic sought preclinical,observational,or clinical studies examining the effects of exercise after a cancer diagnosis on a cancer outcome(e.g.,cell/tumor growth,tumor response,disease recurrence,progression,death from cancer).It includes 6 original articles and an invited opinion article.展开更多
Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquef...Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquefaction induced by sudden pressure release of the over-pressured sand body,and formation collapse due to gasification of pore fillings from pressure reduction,this study first systematically analyzes the progress of theoretical understanding,experimental methods,and mathematical representation,then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness.Based on these research efforts,the study further discusses the significant challenges,potential developmental trends,and research approaches that require urgent exploration.The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms,which will eventually instruct the control on resource exploitation,evaluation on disaster level,and analysis of formation stability.To meet the development needs of the principle,future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation,developing novel experimental equipment,and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.展开更多
In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC...In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.展开更多
Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have m...Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have markedly increased overall survival.Many patients with MM eventually experience relapse or become treatment-refractory1.Patients with relapsed or refractory multiple myeloma(RRMM)become progressively more challenging to manage and have poor prognosis2.展开更多
Ribosomal RNA(rRNA)synthesis is intricately tied to cellular growth and proliferation.Basic fibroblast growth factor(FGF2),a pivotal factor for bone marrow mesenchymal stem cells(BMSCs),can stimulates rRNA transcripti...Ribosomal RNA(rRNA)synthesis is intricately tied to cellular growth and proliferation.Basic fibroblast growth factor(FGF2),a pivotal factor for bone marrow mesenchymal stem cells(BMSCs),can stimulates rRNA transcription,though the underlying mechanism remains unknown.Here,we demonstrate that the cytoplasm-nucleus translocation of FGF2 is determined by the stable nuclear localization motif.Meanwhile,the nuclear FGF2 regulates rRNA expression and BMSCs proliferation via phase separation.Next,through FGF2 related epigenomics and 3D genomes analysis,we identified chromatin architectures during BMSCs differentiation and aging.In the process,topologically associating domains(TADs)and chromatin loops profiling revealed the attenuated genomic interaction among proximal chromosomes 13,14,15,21,and 22,where phase-separated FGF2 facilitates rDNA transcription depend on specific super-enhancers(SEs).Furthermore,we validated that FGF2 orchestrates rDNA chromatin architecture in coordination with STAT5.Together,these findings underscore the pivotal role of FGF2 in rDNA chromatin architectures,which determines BMSCs cell fate.展开更多
Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor perf...Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor performance by balancing the stator phase operation for the most common-used connection diagrams of single-phase capacitor-run induction motors (SPCRIMs) and three-phase induction motors (TPIMs) operating from single-phase supply (SPS). Therefore, a mathematical model is used to balance the motor operation by varying the frequency supply voltage. Characteristics of balancing parameters are investigated, various methods of motor balancing are presented and comparisons were done among these balancing methods.展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFB1304902)the National Natural Science Foundation of China(Grant Nos.12004034,U1813211,22005247,11904372,51502007,52072323,52122211,12174019,and 51972058)+1 种基金the Gen-eral Research Fund of Hong Kong(Project No.11217221)China Postdoctoral Science Foundation Funded Project(Grant No.2021M690386).
文摘Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.
文摘Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations.
文摘In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.
基金funded by Beijing Nova Program(grant number:20230484277)National Natural Science Foundation of China(grant number:82303955).
文摘1.Introduction Phase Ⅱ trials are typically designed to identify promising treatment therapies that warrant further investigation in subsequent phase Ⅲ con-firmatory trials,playing a vital role in evidence generation of drug de-velopment.The basic design features of phase II trials include interim go/no-go decisions to prevent exposing too many patients to poten-tially ineffective treatments.Appropriate go/no-go decisions and effi-cient trial designs can shorten the research duration and increase trial success rates.
基金supported by the Natural Science Foundation of China(Grant Nos.T2325013,12474004,and 52288102)the National Key Research and Development Program of China(Grant No.2021YFA1400503)the Program for Jilin University Science and Technology Innovative Research Team。
文摘A longstanding discrepancy between theoretical predictions and experimental observations on the highpressurestructural transformations of lanthanum mononitride(LaN)has posed challenges for understandingthe behavior of heavy transition metal mononitrides.Here,we systematically investigate the structural evolutionof LaN under high pressure using first-principles calculations combined with angle-dispersive synchrotron X-raydiffraction,identifying the phase transition sequence and corresponding phase boundaries.Analyses of energetics,kinetic barriers,and lattice dynamics reveal distinct mechanisms driving these transitions.These results clarifythe structural stability of LaN and offer guidance for studying other heavy transition metal mononitrides withcomplex electronic behavior under extreme conditions.
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
文摘Non-iterative analysis of indentation results allows for the detection of phase transitions under load and their transition energy. The closed algebraic equations have been deduced on the basis of the physically founded normal force ?depth3/2 relation. The precise transition onset position is obtained by linear regression of the FN = kh3/2 plot, where k is the penetration resistance, which also provides the axis cuts of both polymorphs of first order phase transitions. The phase changes can be endothermic or exothermic. They are normalized per μN or mN normal load. The analyses of indentation loading curves with self-similar diamond indenters are used as validity check of the loading curves, also from calibration standards that exhibit previously undetected phase-transitions and are thus incorrect. The phase-transition energies for fused quartz are determined from the loading curves from instrument provider handbooks. The anisotropic behavior of phase transition energies is studied for the first time. Quartz is a useful test object. The reasons for the packing-dependent differences are discussed on the basis of the local crystal structure under and around the inserting tip.
基金supported by the National Key R&D Pro-gram of China(No.2022YFB3805701)National Natural Science Foundation of China(NSFC)(No.52371182,51701052,52192592,52192593)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Heilongjiang Touyan Innovation Team Program.
文摘1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Natural Science Foundation of China(U1507111).
文摘The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were determined.The complete phase diagrams,binodal curve diagrams,and tie-line diagrams were all plotted.Results show that both solid-liquid equilibria and liquid-liquid equilibria relationships at each studied temperature.The complete phase diagrams at 288.2 K,298.2 K and 308.2 K consist of six phase regions:unsaturated liquid region(L),two saturated solutions with one solid phase of RbCl(L_S),one saturated liquid phase with two solid phases of PEG6000 and RbCl(2S+L),an aqueous two-phase region(2L),and a region with two liquids and one solid phase of RbCl(2L_S).With the increase in temperature,the layering ability of the aqueous two-phase system increases,and both regions(2L)and(2L_S)increase.The binodal curves were fitted using the nonlinear equations proposed by Mistry,Hu,and Jayapal.Additionally,the tie-line data were correlated with the Othmer-Tobias,Bancroft,Hand,and Bachman equations.The liquid-liquid equilibria at 288.2 K,298.2 K and 308.2 K were calculated using the NRTL model.The findings confirm that the experimental and calculated values are in close agreement,demonstrating the model’s effectiveness in representing the system’s behavior.
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
文摘A.Switch-Redundant Topology An early attempt to add fault tolerant capacity to a standard three-phase inverter topology for induction motors was presented.This topology will be referred to as the switch-redundant topology and is shown in Fig.5.This topology incorporates four TRIACs or back-to-back connected SCRs and three fast acting fuses.The fuses are connected in series with the load phases.Since this topology is a combination of topologies and control methods to accommodate an opened phase,and a shorted switch,they will be considered separately.
文摘Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4].
基金supported by the Canada Research Chairs Programa Foundation Grant from the Canadian Institutes of Health Research (No. 159927)
文摘Exercise is established as a supportive care intervention during and after various cancer treatment modalities.1,2 Documented benefits include improvements in health-related fitness,physical functioning,some symptoms/side effects,psychosocial functioning,and quality of life.1,2 Exercise has not been established,however,as a treatment for any type of cancer in any clinical oncology setting.2 This special topic of the Journal of Sport and Health Science(JSHS)is dedicated to research on“Exercise as a cancer treatment”.The special topic sought preclinical,observational,or clinical studies examining the effects of exercise after a cancer diagnosis on a cancer outcome(e.g.,cell/tumor growth,tumor response,disease recurrence,progression,death from cancer).It includes 6 original articles and an invited opinion article.
基金Supported by the National Natural Science Foundation of China(NSFC)Major Project(51991362).
文摘Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquefaction induced by sudden pressure release of the over-pressured sand body,and formation collapse due to gasification of pore fillings from pressure reduction,this study first systematically analyzes the progress of theoretical understanding,experimental methods,and mathematical representation,then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness.Based on these research efforts,the study further discusses the significant challenges,potential developmental trends,and research approaches that require urgent exploration.The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms,which will eventually instruct the control on resource exploitation,evaluation on disaster level,and analysis of formation stability.To meet the development needs of the principle,future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation,developing novel experimental equipment,and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.
基金supported by the National Natural Science Foundation of China(Grant No.12204130)the Fundamental Research Funds for the Central University of China(Grant No.2019ZDPY16)+2 种基金the Basic Research Project of Xuzhou City(Grant No.KC22043)the support funded by the Graduate Innovation Program of China University of Mining and Technology(Grant Nos.2024WLJCRCZL266 and 2024WLJCRCZL294)the Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_2692)。
文摘In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.
基金supported by grant from the National Natural Science Foundation of China(Grant No.82300231).
文摘Multiple myeloma(MM),one of the most common hemato logical neoplasms worldwide,originates from malignant plasma cells in the bone marrow.MM remains an incurable disease,although continued treatment advancements have markedly increased overall survival.Many patients with MM eventually experience relapse or become treatment-refractory1.Patients with relapsed or refractory multiple myeloma(RRMM)become progressively more challenging to manage and have poor prognosis2.
基金the open research project of State Key Laboratory of Oral Diseases(no.SKLOD2024OF03)the Key Project of Natural Science Research in Anhui Provincial Universities(no.2024AH050683)+1 种基金Anhui Province Outstanding Young Teachers Development Program(no.YQYB2024013)the National Natural Science Foundation of China(no.82201026,82125006).
文摘Ribosomal RNA(rRNA)synthesis is intricately tied to cellular growth and proliferation.Basic fibroblast growth factor(FGF2),a pivotal factor for bone marrow mesenchymal stem cells(BMSCs),can stimulates rRNA transcription,though the underlying mechanism remains unknown.Here,we demonstrate that the cytoplasm-nucleus translocation of FGF2 is determined by the stable nuclear localization motif.Meanwhile,the nuclear FGF2 regulates rRNA expression and BMSCs proliferation via phase separation.Next,through FGF2 related epigenomics and 3D genomes analysis,we identified chromatin architectures during BMSCs differentiation and aging.In the process,topologically associating domains(TADs)and chromatin loops profiling revealed the attenuated genomic interaction among proximal chromosomes 13,14,15,21,and 22,where phase-separated FGF2 facilitates rDNA transcription depend on specific super-enhancers(SEs).Furthermore,we validated that FGF2 orchestrates rDNA chromatin architecture in coordination with STAT5.Together,these findings underscore the pivotal role of FGF2 in rDNA chromatin architectures,which determines BMSCs cell fate.
文摘Studying of operation balance in single-phase induction motors is an issue of interest due to the need for reducing the power consumption and increasing the motors’ life. The paper focuses on improving the motor performance by balancing the stator phase operation for the most common-used connection diagrams of single-phase capacitor-run induction motors (SPCRIMs) and three-phase induction motors (TPIMs) operating from single-phase supply (SPS). Therefore, a mathematical model is used to balance the motor operation by varying the frequency supply voltage. Characteristics of balancing parameters are investigated, various methods of motor balancing are presented and comparisons were done among these balancing methods.