To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has be...To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method. The uniform energy equation is constructed for the whole domain, and the equation is implicitly discreted by control volume and finite difference method. Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations, and the inner surface temperature of PCM could be obtained. According to the human thermoregulation model of heat sinking vest, the dynamic temperature distribution and sweat of the body are solved. Calculation results indicate that the change of core temperature matches the experimental result, and the sweat difference is small. This thermal mathematical model of heat transfer with phase change is credible and appropriate. Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing, it is evident that wearing heat sinking vest can reduce the body heat load significantly.展开更多
CDMOs are emerging as critical drivers of innovation within the pharmaceutical and biotech industries. As the pharmaceutical industry continues to evolve, we can expect to see CDMOs play an increasingly important role...CDMOs are emerging as critical drivers of innovation within the pharmaceutical and biotech industries. As the pharmaceutical industry continues to evolve, we can expect to see CDMOs play an increasingly important role in drug development and manufacturing. Many companies within these sectors are now leveraging the expertise of CDMOs through technology transfers to foster innovation and enhance the development of new drug products. In the extensive field of drug development, technology transfer plays a crucial role at multiple stages, ranging from preclinical phases to commercialization. By working closely with drug developers, CDMOs can ensure that technologies are transferred seamlessly between phases of drug development, allowing for a more efficient and cost-effective development process. CDMOs also bring a wealth of experience in various areas of drug development, including process development, analytical testing, quality control, and manufacturing. This expertise, combined with a focus on innovation, can help drug developers to overcome technical challenges and optimize their drug development programs. CDMOs can provide drug developers with various manufacturing capabilities, from small-scale clinical trials to large-scale commercial production. This flexibility allows drug developers to focus on their core competencies while relying on CDMOs to provide the necessary infrastructure and support for drug manufacturing. The critical role of CDMOs in advancing pharmaceutical innovation in phase-appropriate technology transfer where there will be a lot of effort and patience with strong technical expertise is required. This article explores the various types of Technology transfer from preclinical to commercial stages and successful strategies to foster innovation.展开更多
We have theoretically studied the modal dispersion equation and effective refractive index of one-dimensional plasma photonic crystals (1-D PPCs) having different materials in one unit cell. The dispersion relations r...We have theoretically studied the modal dispersion equation and effective refractive index of one-dimensional plasma photonic crystals (1-D PPCs) having different materials in one unit cell. The dispersion relations related for such structure is derived by solving Maxwell’s equation using the transfer matrix method. It is found that the presence of plasma in a unit cell enhanced the phase matching ability and provides additional degree of freedom to control phase matching condition compared to the conventional one-dimensional photonic crystals (1-D PCs).展开更多
文摘To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method. The uniform energy equation is constructed for the whole domain, and the equation is implicitly discreted by control volume and finite difference method. Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations, and the inner surface temperature of PCM could be obtained. According to the human thermoregulation model of heat sinking vest, the dynamic temperature distribution and sweat of the body are solved. Calculation results indicate that the change of core temperature matches the experimental result, and the sweat difference is small. This thermal mathematical model of heat transfer with phase change is credible and appropriate. Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing, it is evident that wearing heat sinking vest can reduce the body heat load significantly.
文摘CDMOs are emerging as critical drivers of innovation within the pharmaceutical and biotech industries. As the pharmaceutical industry continues to evolve, we can expect to see CDMOs play an increasingly important role in drug development and manufacturing. Many companies within these sectors are now leveraging the expertise of CDMOs through technology transfers to foster innovation and enhance the development of new drug products. In the extensive field of drug development, technology transfer plays a crucial role at multiple stages, ranging from preclinical phases to commercialization. By working closely with drug developers, CDMOs can ensure that technologies are transferred seamlessly between phases of drug development, allowing for a more efficient and cost-effective development process. CDMOs also bring a wealth of experience in various areas of drug development, including process development, analytical testing, quality control, and manufacturing. This expertise, combined with a focus on innovation, can help drug developers to overcome technical challenges and optimize their drug development programs. CDMOs can provide drug developers with various manufacturing capabilities, from small-scale clinical trials to large-scale commercial production. This flexibility allows drug developers to focus on their core competencies while relying on CDMOs to provide the necessary infrastructure and support for drug manufacturing. The critical role of CDMOs in advancing pharmaceutical innovation in phase-appropriate technology transfer where there will be a lot of effort and patience with strong technical expertise is required. This article explores the various types of Technology transfer from preclinical to commercial stages and successful strategies to foster innovation.
文摘We have theoretically studied the modal dispersion equation and effective refractive index of one-dimensional plasma photonic crystals (1-D PPCs) having different materials in one unit cell. The dispersion relations related for such structure is derived by solving Maxwell’s equation using the transfer matrix method. It is found that the presence of plasma in a unit cell enhanced the phase matching ability and provides additional degree of freedom to control phase matching condition compared to the conventional one-dimensional photonic crystals (1-D PCs).