High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional propertie...High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional properties in comparison with traditional alloys.However,the trade-off relationship is still present between strength and ductility in HEAs,significantly limiting the practical and wide application of HEAs.Moreover,the preparation of HEAs by trial-and-error method is time-consuming and resource-wasting,hindering the high-speed and high-quality development of HEAs.Herein,the primary objective of this work is to summarize the latest advancements in HEAs,focusing on methods for predicting phase structures and the factors influencing mechanical properties.Additionally,strengthening and toughening strategies for HEAs are highlighted,thus maximizing their application potential.Besides,challenges and future investigation direction of HEAs are also identified and proposed.展开更多
We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, rulin...We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, ruling out the previously speculated cubic structure. Further increasing the pressure, we find a tetragonal P4/nmm structure which is energetically more favourable from 107.9 CPa to 200 GPa. Especially, the tetragonal P4/nmm structure is known to occur at high pressure in the structures of ZnO and MgTe. We also predict this structure to be a high-pressure structure of ZnTe. Thus the tetragonal P4/nmm structure may be a universal high-pressure structure of the Ⅱ-Ⅵ and the Ⅲ-Ⅴ compounds.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52375451,52005396)Shandong Provincial Natural Science Foundation,China(Nos.ZR2023YQ052,ZR2023ME087)+6 种基金Shandong Provincial Technological SME Innovation Capability Promotion Project,China(No.2023TSGC0375)Young Taishan Scholars Program of Shandong Province,China(No.tsqn202306041)Guangdong Basic and Applied Basic Research Foundation,China(No.2023 A1515010044)Shandong Provincial Youth Innovation Team,China(No.2022KJ038)Open Project of State Key Laboratory of Solid Lubrication,China(No.LSL-22-11)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(No.20210414)Qilu Youth Scholar Project Funding of Shandong University,China。
文摘High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional properties in comparison with traditional alloys.However,the trade-off relationship is still present between strength and ductility in HEAs,significantly limiting the practical and wide application of HEAs.Moreover,the preparation of HEAs by trial-and-error method is time-consuming and resource-wasting,hindering the high-speed and high-quality development of HEAs.Herein,the primary objective of this work is to summarize the latest advancements in HEAs,focusing on methods for predicting phase structures and the factors influencing mechanical properties.Additionally,strengthening and toughening strategies for HEAs are highlighted,thus maximizing their application potential.Besides,challenges and future investigation direction of HEAs are also identified and proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos.11064015,10676011,and 10664005)the National Basic Research Program of China (Grant No.2005CB724400)+1 种基金the Program for 2005 New Century Excellent Talents in University (Grant No.2005CB724400)the 2007 Cheung Kong Scholars Programme of China (Grant No.IRT0625)
文摘We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, ruling out the previously speculated cubic structure. Further increasing the pressure, we find a tetragonal P4/nmm structure which is energetically more favourable from 107.9 CPa to 200 GPa. Especially, the tetragonal P4/nmm structure is known to occur at high pressure in the structures of ZnO and MgTe. We also predict this structure to be a high-pressure structure of ZnTe. Thus the tetragonal P4/nmm structure may be a universal high-pressure structure of the Ⅱ-Ⅵ and the Ⅲ-Ⅴ compounds.