Quantum phase estimation reveals the power of quantum resources to beat the standard quantum limit and has been widely used in many fields.To improve the precision of phase estimation,we discuss the optimal probe stat...Quantum phase estimation reveals the power of quantum resources to beat the standard quantum limit and has been widely used in many fields.To improve the precision of phase estimation,we discuss the optimal probe states for phase estimation with a fixed mean particle number.By searching for the maximum quantum Fisher information,we optimize the probe states,which are superior to the path-entangled Fock states.Comparing the mean particle number(n)with the dimension of the probe states in Fock space(N+1),when n≤N,our optimal probe states can provide a better performance than the n00n states.When n>N,our optimal probe states can also remain optimal if the dimension of the probe states is large enough.展开更多
The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier trans...The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.展开更多
We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an op...We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an optical parametric amplifier before a Mach-Zehnder interferometer. It is shown that our hybrid protocol can obtain a better quantum Cramer- Rao bound than the pure active (e.g., SU(1, I)) interferometer, and this precision can be reached by implementing the parity measurements. Furthermore, we also draw a detailed comparison between our scheme and the scheme suggested by Caves [Phys. Rev. D 23 1693 (1981)], and it is found that the optimal phase sensitivity gain obtained in our scheme is always larger than that in Caves' scheme.展开更多
We theoretically study the quantum Fisher information(QFI) of the SU(1,1) interferometer with phase shifts in two arms by coherent squeezed vacuum state input, and give the comparison with the result of phase shi...We theoretically study the quantum Fisher information(QFI) of the SU(1,1) interferometer with phase shifts in two arms by coherent squeezed vacuum state input, and give the comparison with the result of phase shift only in one arm.Different from the traditional Mach–Zehnder interferometer, the QFI of single-arm case for an SU(1,1) interferometer can be slightly higher or lower than that of two-arm case, which depends on the intensities of the two arms of the interferometer.For coherent squeezed vacuum state input with a fixed mean photon number, the optimal sensitivity is achieved with a squeezed vacuum input in one mode and the vacuum input in the other.展开更多
The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal q...The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.展开更多
Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure wa...Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure way to store and transmit information as well as a speed-up way to accelerate local or distributed classical algorithms that are hard to solve with polynomial complexity in computation or communication.In this paper,we focus on the phase estimation method that is crucial to the realization of a general multi-party computing model,which is able to be accelerated by quantum algorithms.A novel multi-party phase estimation algorithm and the related quantum circuit are proposed by using a distributed Oracle operator with iterations.The proved theoretical communication complexity of this algorithm shows it can give the phase estimation before applying multi-party computing efficiently without increasing any additional complexity.Moreover,a practical problem of multi-party dating investigated shows it can make a successful estimation of the number of solution in advance with zero communication complexity by utilizing its special statistic feature.Sufficient simulations present the correctness,validity and efficiency of the proposed estimation method.展开更多
In this Letter, we provide a novel maximum a posteriori probability detection-based decision-directed carrier phase estimation(MAP-DDCPE) algorithm. The introduced probability-aware maximum a posteriori probability(MA...In this Letter, we provide a novel maximum a posteriori probability detection-based decision-directed carrier phase estimation(MAP-DDCPE) algorithm. The introduced probability-aware maximum a posteriori probability(MAP) detection avoids the decision errors brought by an ununiform probability distribution, which enhances the phase-tracking ability for the probabilistic shaping(PS) signals. With the proposed MAP-DDCPE, we experimentally demonstrate the 96-channel transmission that delivers 40-GBaud polarization division multiplexing(PDM) PS-64-ary quadrature amplitude modulation(64QAM) signals over the 2-km nested anti-resonant nodeless fiber(NANF). We believe the PS-assisted broadband NANF transmission enabled by the MAP-DDCPE is a promising solution for large-capacity optical communication.展开更多
The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale ...The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.展开更多
X-ray pulsar navigation(XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the ge...X-ray pulsar navigation(XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood(ML) phase estimation method that directly utilizes the measured time of arrivals(TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.展开更多
The effects of movement errors on imaging results of synthetic aperture sonar and the necessity of movement compensation are discussed. Based on analyzing so-called displaced phase center algorithm, an improved algori...The effects of movement errors on imaging results of synthetic aperture sonar and the necessity of movement compensation are discussed. Based on analyzing so-called displaced phase center algorithm, an improved algorithm is proposed. In this method, the time delay is estimated firstly, then the phase is estimated for the residual error, so that the range of movement error suited to the algorithm is extended to some extent. Some simulation results on computer and experimental results in the test tank using the proposed algorithm are given as well.展开更多
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ...Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.展开更多
In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual appro...In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.展开更多
An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is di...An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.展开更多
An accurate period is important to recover the pulse profile from a recorded photon event series of an X-ray pulsar and to estimate the pulse time of arrival,which is the measurement of X-ray pulsar navigation.Epoch f...An accurate period is important to recover the pulse profile from a recorded photon event series of an X-ray pulsar and to estimate the pulse time of arrival,which is the measurement of X-ray pulsar navigation.Epoch folding is a classical period estimation method in the time domain;however,its computational complexity grows as the number of trail periods increases.In order to reduce the computational complexity,this paper improves the fast folding algorithm through segment correlation and amplitude accumulation,which is based on the post-order traversal of a binary tree.Compared with epoch folding,the improved fast folding algorithm can achieve a similar accuracy at the cost of a lower computational burden.Compared with the original fast folding algorithm,the improved algorithm can be applied to detectors with a much smaller effective area.The performance of the method is investigated by simulation data and observation data from the Neutron star Interior Composition Explorer(NICER).展开更多
The phase error estimated by phase gradient autofocus(PGA) is not based on a finite order polynomial mode, so PGA has a good autofocus property for arbitrary order phase error and is fit for high resolution airborne S...The phase error estimated by phase gradient autofocus(PGA) is not based on a finite order polynomial mode, so PGA has a good autofocus property for arbitrary order phase error and is fit for high resolution airborne SAR. But PGA has two shortcomings: first, it has a worse estimation property for fast changing phase error; second, there exists a section of linear phase in the phase error estimated by this algorithm. This paper introduces the idea of rank one phase estimate (ROPE) autofocus technique, and improves PGA. The improved PGA(IPGA) can successfully overcome both these shortcomings of PGA.展开更多
This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optima...This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optimal path-following strategy based on phase quality estimate function. The enhanced joint phase gradient estimator can accurately and effectively extract the phase gradient information of wrapped pixels from noisy interferograms, which greatly increases the performances of the proposed method. The optimal path-following strategy ensures that the proposed algorithm simultaneously performs noise suppression and phase unwrapping along the pixels with high-reliance to the pixels with low-reliance. Accordingly, the proposed algorithm can be predicted to obtain better results, with respect to some other algorithms, as will be demonstrated by the results obtained from synthetic data.展开更多
Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures ...Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures are defined as the pilot frequency sequence. Estimation within one symbol cycle is carried out through averaging samples of two neighboring symbol cycles, after which the operation is expanded to all the symbol cycles in one band group. Taking multipath effect into account, the concept of phase rotation is proposed for a further step. Adjust the phase difference of estimated symbols by phase rotation, and cross estimation could be done. Meanwhile, timing scheme works within one cycle training sequence. Theoretical and simulation analysis indicate that CRLB does not only relate to estimation symbol length, but also be influenced by phase difference of estimation symbols seriously. In the condition that the length of estimation is fixed, the bigger the phase rotation angle is, the smaller the CRLB is. The complexity of proposed algorithm is less than full cycle average estimation method for almost 50%. Meanwhile, the estimation accuracy is approximate with the full cycle average estimation method as well. Timing scheme with the defined preamble structure is also proposed. Simulation proves its efficiency.展开更多
Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified missi...Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified mission targets.PBD is usually performed based on space-borne GNSS data,the relative corrections of phase center and code residual variations play crucial roles in achieving the best relative orbit accuracy.Herein,the influences of antenna Relative Phase Centre Variations(RPCVs)and Single-Difference(SD)Melbourne-Wu¨bbena(MW)Combination Residuals Variations(SD MWVs)on PBD are studied.The methods were tested using flight data from Gravity Recovery And Climate Experiment(GRACE)and GRACE Follow-On(GRACE-FO).Results showed that the maximum values for RPCVs and SD MWVs were 14 mm and 0.32 cycles,respectively.Then,the RPCVs correction significantly enhanced the baseline accuracy;the K-Band Ranging(KBR)measurement consistency improved by 30.1%and 37.5%for GRACE and GRACE-FO,respectively.The application of SD MWVs further improved the accuracy and reliability of PBD results.For GRACE,the ambiguities fixing success rate increased from 85.1%to 97.9%and a baseline consistency of 0.57 mm was achieved for the KBR measurements.It was found that the correction of both RPCVs and SD MWVs reduced the carrier phase observation minus computation residuals from double-difference ionosphere-free combination.In addition,in-flight data processing demonstrated that RPCVs and SD MWVs estimations for the current period could be used for the previous and subsequent periods.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used...Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12405026)the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBA050001)。
文摘Quantum phase estimation reveals the power of quantum resources to beat the standard quantum limit and has been widely used in many fields.To improve the precision of phase estimation,we discuss the optimal probe states for phase estimation with a fixed mean particle number.By searching for the maximum quantum Fisher information,we optimize the probe states,which are superior to the path-entangled Fock states.Comparing the mean particle number(n)with the dimension of the probe states in Fock space(N+1),when n≤N,our optimal probe states can provide a better performance than the n00n states.When n>N,our optimal probe states can also remain optimal if the dimension of the probe states is large enough.
基金Supported by the National Natural Science Foundation of China Grant No.10874098the National Basic Research Program of China under Grant Nos.2009CB929402 and 2011CB9216002
文摘The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc. In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case run in a qudit quantum computer, and the quantum circuits are They can be seen as subroutines in a main program given.
基金Project supported by the National Natural Science Foundation of China(Grant No.11665010)the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,China(Grant No.QSQC1414)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.17B055)
文摘We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an optical parametric amplifier before a Mach-Zehnder interferometer. It is shown that our hybrid protocol can obtain a better quantum Cramer- Rao bound than the pure active (e.g., SU(1, I)) interferometer, and this precision can be reached by implementing the parity measurements. Furthermore, we also draw a detailed comparison between our scheme and the scheme suggested by Caves [Phys. Rev. D 23 1693 (1981)], and it is found that the optimal phase sensitivity gain obtained in our scheme is always larger than that in Caves' scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474095,11654005,and 11234003)the National Key Research and Development Program of China(Grant No.2016YFA0302000)
文摘We theoretically study the quantum Fisher information(QFI) of the SU(1,1) interferometer with phase shifts in two arms by coherent squeezed vacuum state input, and give the comparison with the result of phase shift only in one arm.Different from the traditional Mach–Zehnder interferometer, the QFI of single-arm case for an SU(1,1) interferometer can be slightly higher or lower than that of two-arm case, which depends on the intensities of the two arms of the interferometer.For coherent squeezed vacuum state input with a fixed mean photon number, the optimal sensitivity is achieved with a squeezed vacuum input in one mode and the vacuum input in the other.
基金supported by the National Natural Science Foundation of China(Grants No.11247294)the Research Foundation of Education Bureau of Hunan Province,China(Grant No.12C0826)+2 种基金the Doctor Foundation Startup from Hunan University of Arts and Science,China(Grant No.13101039)the Key Laboratory of Photoelectricity Information Integration and Optics Manufacture Technology in Hunan Province,Chinathe Construct Program of the Key Discipline in Hunan University of Arts and Science(Optics),China
文摘The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61501247,61373131 and 61702277,the Six Talent Peaks Project of Jiangsu Province(Grant No.2015-XXRJ-013)Natural Science Foundation of Jiangsu Province(Grant No.BK20171458)+3 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(China under Grant No.16KJB520030)the NUIST Research Foundation for Talented Scholars under Grant Nos.2015r014,PAPD and CICAEET fundsfunded in part by the Science and Technology Development Fund,Macao SAR(File No.SKL-IOTSC-2018-2020,0018/2019/AKP,0008/2019/AGJ,and FDCT/194/2017/A3)in part by the University of Macao under Grant Nos.MYRG2018-00248-FST and MYRG2019-0137-FST.
文摘Security and privacy issues have attracted the attention of researchers in the field of IoT as the information processing scale grows in sensor networks.Quantum computing,theoretically known as an absolutely secure way to store and transmit information as well as a speed-up way to accelerate local or distributed classical algorithms that are hard to solve with polynomial complexity in computation or communication.In this paper,we focus on the phase estimation method that is crucial to the realization of a general multi-party computing model,which is able to be accelerated by quantum algorithms.A novel multi-party phase estimation algorithm and the related quantum circuit are proposed by using a distributed Oracle operator with iterations.The proved theoretical communication complexity of this algorithm shows it can give the phase estimation before applying multi-party computing efficiently without increasing any additional complexity.Moreover,a practical problem of multi-party dating investigated shows it can make a successful estimation of the number of solution in advance with zero communication complexity by utilizing its special statistic feature.Sufficient simulations present the correctness,validity and efficiency of the proposed estimation method.
基金supported by the National Key R&D Program of China (No. 2018YFB1800905)the National Natural Science Foundation of China (Nos. 61935005, 61720106015, 61835002, and 62127802)。
文摘In this Letter, we provide a novel maximum a posteriori probability detection-based decision-directed carrier phase estimation(MAP-DDCPE) algorithm. The introduced probability-aware maximum a posteriori probability(MAP) detection avoids the decision errors brought by an ununiform probability distribution, which enhances the phase-tracking ability for the probabilistic shaping(PS) signals. With the proposed MAP-DDCPE, we experimentally demonstrate the 96-channel transmission that delivers 40-GBaud polarization division multiplexing(PDM) PS-64-ary quadrature amplitude modulation(64QAM) signals over the 2-km nested anti-resonant nodeless fiber(NANF). We believe the PS-assisted broadband NANF transmission enabled by the MAP-DDCPE is a promising solution for large-capacity optical communication.
基金Project supported by the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20233001 and BK20243060)the National Natural Science Foundation of China(Grant No.62288101)。
文摘The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.
基金Project supported by the National Natural Science Foundation of China(No.61172138)the Fundamental Research Funds for the Central Universities(Nos.K5051302015 and K5051302040)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(No.2013JQ8040)the Research Fund for the Doctoral Program of Higher Education of China(No.20130203120004)
文摘X-ray pulsar navigation(XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of X-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood(ML) phase estimation method that directly utilizes the measured time of arrivals(TOAs) is presented. The X-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used Poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.
文摘The effects of movement errors on imaging results of synthetic aperture sonar and the necessity of movement compensation are discussed. Based on analyzing so-called displaced phase center algorithm, an improved algorithm is proposed. In this method, the time delay is estimated firstly, then the phase is estimated for the residual error, so that the range of movement error suited to the algorithm is extended to some extent. Some simulation results on computer and experimental results in the test tank using the proposed algorithm are given as well.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367)the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604)+1 种基金the National Key Research and Development Program of China (Grant No. 2021YFE0113100)supported by Beijing Academy of Quantum Information Sciences
文摘Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
基金National Natural Science Foundation of China(61002033,60902089)Open Research Fund of State Key Laboratory of Astronautic Dynamics of China (2011ADL-DW0103)
文摘In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.
基金supported by the National Natural Science Foundation of China (60972072)the National Science and Technology Major Projects: the New Generation Broadband Wireless Mobile Communication Network (2009ZX03003-03)the "111 Project" of China (B08038)
文摘An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.
基金the National Natural Science Foundation of China(No.61703413).
文摘An accurate period is important to recover the pulse profile from a recorded photon event series of an X-ray pulsar and to estimate the pulse time of arrival,which is the measurement of X-ray pulsar navigation.Epoch folding is a classical period estimation method in the time domain;however,its computational complexity grows as the number of trail periods increases.In order to reduce the computational complexity,this paper improves the fast folding algorithm through segment correlation and amplitude accumulation,which is based on the post-order traversal of a binary tree.Compared with epoch folding,the improved fast folding algorithm can achieve a similar accuracy at the cost of a lower computational burden.Compared with the original fast folding algorithm,the improved algorithm can be applied to detectors with a much smaller effective area.The performance of the method is investigated by simulation data and observation data from the Neutron star Interior Composition Explorer(NICER).
文摘The phase error estimated by phase gradient autofocus(PGA) is not based on a finite order polynomial mode, so PGA has a good autofocus property for arbitrary order phase error and is fit for high resolution airborne SAR. But PGA has two shortcomings: first, it has a worse estimation property for fast changing phase error; second, there exists a section of linear phase in the phase error estimated by this algorithm. This paper introduces the idea of rank one phase estimate (ROPE) autofocus technique, and improves PGA. The improved PGA(IPGA) can successfully overcome both these shortcomings of PGA.
基金supported by the National Natural Science Foundation of China(4120147961261033+2 种基金61461011)the Guangxi Natural Science Foundation(2014GXNSFBA118273)the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing(GXKL061503)
文摘This paper presents an enhanced multi-baseline phase unwrapping algorithm by combining an unscented Kalman filter with an enhanced joint phase gradient estimator based on the amended matrix pencil model, and an optimal path-following strategy based on phase quality estimate function. The enhanced joint phase gradient estimator can accurately and effectively extract the phase gradient information of wrapped pixels from noisy interferograms, which greatly increases the performances of the proposed method. The optimal path-following strategy ensures that the proposed algorithm simultaneously performs noise suppression and phase unwrapping along the pixels with high-reliance to the pixels with low-reliance. Accordingly, the proposed algorithm can be predicted to obtain better results, with respect to some other algorithms, as will be demonstrated by the results obtained from synthetic data.
基金supported by the National Natural Science Foundation of China (No. 61371092 , No. 61401175)the Doctoral Fund of Ministry of Education of China (No. 20130061120062)the China Postdoctoral Science Foundation (No. 2014M551184)
文摘Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures are defined as the pilot frequency sequence. Estimation within one symbol cycle is carried out through averaging samples of two neighboring symbol cycles, after which the operation is expanded to all the symbol cycles in one band group. Taking multipath effect into account, the concept of phase rotation is proposed for a further step. Adjust the phase difference of estimated symbols by phase rotation, and cross estimation could be done. Meanwhile, timing scheme works within one cycle training sequence. Theoretical and simulation analysis indicate that CRLB does not only relate to estimation symbol length, but also be influenced by phase difference of estimation symbols seriously. In the condition that the length of estimation is fixed, the bigger the phase rotation angle is, the smaller the CRLB is. The complexity of proposed algorithm is less than full cycle average estimation method for almost 50%. Meanwhile, the estimation accuracy is approximate with the full cycle average estimation method as well. Timing scheme with the defined preamble structure is also proposed. Simulation proves its efficiency.
基金supported by the National Natural Science Foundation of China(Nos.41874028,61803018)。
文摘Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified mission targets.PBD is usually performed based on space-borne GNSS data,the relative corrections of phase center and code residual variations play crucial roles in achieving the best relative orbit accuracy.Herein,the influences of antenna Relative Phase Centre Variations(RPCVs)and Single-Difference(SD)Melbourne-Wu¨bbena(MW)Combination Residuals Variations(SD MWVs)on PBD are studied.The methods were tested using flight data from Gravity Recovery And Climate Experiment(GRACE)and GRACE Follow-On(GRACE-FO).Results showed that the maximum values for RPCVs and SD MWVs were 14 mm and 0.32 cycles,respectively.Then,the RPCVs correction significantly enhanced the baseline accuracy;the K-Band Ranging(KBR)measurement consistency improved by 30.1%and 37.5%for GRACE and GRACE-FO,respectively.The application of SD MWVs further improved the accuracy and reliability of PBD results.For GRACE,the ambiguities fixing success rate increased from 85.1%to 97.9%and a baseline consistency of 0.57 mm was achieved for the KBR measurements.It was found that the correction of both RPCVs and SD MWVs reduced the carrier phase observation minus computation residuals from double-difference ionosphere-free combination.In addition,in-flight data processing demonstrated that RPCVs and SD MWVs estimations for the current period could be used for the previous and subsequent periods.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
文摘Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.