期刊文献+
共找到10,099篇文章
< 1 2 250 >
每页显示 20 50 100
Liquid–Vapor phase separation under shear by a pseudopotential lattice Boltzmann method
1
作者 Chuandong Lin Sisi Shen +2 位作者 Shuange Wang Guoxing Hou Linlin Fei 《Communications in Theoretical Physics》 2025年第7期193-206,共14页
In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing... In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear. 展开更多
关键词 phase separation multiphase flow shear flow lattice Boltzmann method
原文传递
Simulation of CO_(2)-water two-phase fluid displacement characteristics based on the phase field method
2
作者 Changnu Zeng Yiyang Zhang +1 位作者 Hu Lu Zhao Lu 《Deep Underground Science and Engineering》 2025年第4期725-738,共14页
The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase fiel... The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase field method was utilized to simulate the impact of displacement velocity,the water-gas viscosity ratio,and the density ratio on the flow behavior of two-phase fluids in porous media.The effectiveness of displacement was evaluated by analyzing CO_(2)saturation levels.The results indicate that the saturation of CO_(2)in porous media increased as the displacement velocity increased.When the displacement velocity exceeded 0.01 m/s,there was a corresponding increase in CO_(2)saturation.Conversely,when the displacement velocity was below this threshold,the impact on CO_(2)saturation was minimal.An“inflection point,”M3,was present in the viscosity ratio.When the viscosity of CO_(2)is less than 8.937×10^(-5)Pa·s(viscosity ratio below M3),variations in the viscosity of CO_(2)had little impact on its saturation.Conversely,when the viscosity of CO_(2)exceeded 8.937×10^(-5)Pa·s(viscosity ratio greater than M3),saturation increased with an increase in the viscosity ratio.In terms of the density ratio,the saturation of CO_(2)increased monotonically with an increase in the density ratio.Similarly,increasing density ratios resulted in a monotonic increase in CO_(2)saturation,though this trend was less pronounced in numerical simulations.Analysis results of displacement within dead-end pores using pressure and velocity diagrams reveal eddy currents as contributing factors.Finally,the impact of pore throat structure on the formation of dominant channels was examined. 展开更多
关键词 CO_(2)geological storage displacement efficiency enhancement phase field method real core two-phase flow
原文传递
An Efficient Synthesizing Method for Super-Massive Sparse Phased Array in Non-Terrestrial Network Applications
3
作者 Yin Haoyu Zhao Haiyan +2 位作者 Li Weidong Hao Zhangcheng Hong Wei 《China Communications》 2025年第10期1-11,共11页
In this paper,a method for designing supermassive sparse phased arrays(SMSPAs)known as the unitary modified matrix enhancement and matrix pencil(UMMEMP)method is proposed.In this method,an eigenvalue pairing method,wh... In this paper,a method for designing supermassive sparse phased arrays(SMSPAs)known as the unitary modified matrix enhancement and matrix pencil(UMMEMP)method is proposed.In this method,an eigenvalue pairing method,which is inspired by the modified MEMP,effectively pairs the repeated eigenvalues intractable in the unitary matrix pencil method,and it is more effective in determining the locations of elements in the sparse array.Three numerical examples and a full-wave validation are presented to demonstrate the effectiveness of the method,implemented via SMSPA,in achieving low sidelobe level wide-angle scanning radiation patterns,circular flattop radiation patterns,and ultra wide-angle scanning radiation patterns. 展开更多
关键词 Chebyshev array circular flat-top pattern pairing method super-massive sparse phased array ultra wide-angle scanning unitary modified matrix enhancement and matrix pencil
在线阅读 下载PDF
A complementary binary code based phase unwrapping method
4
作者 LI Wenjie SUN Huanghe +3 位作者 LI Fuquan WANG Beibei WANG Haijian GAO Xinyu 《Optoelectronics Letters》 EI 2024年第4期228-233,共6页
Phase unwrapping is used to establish the mapping relationship between camera and projector,which is one of the key technologies in fringe projection profilometry(FPP)based three-dimensional(3D)measurement.Although co... Phase unwrapping is used to establish the mapping relationship between camera and projector,which is one of the key technologies in fringe projection profilometry(FPP)based three-dimensional(3D)measurement.Although complementary Gray code assisted phase unwrapping technology can get a good result on the periodic boundary,it needs more coded images to obtain a high frequency fringe.Aiming at this problem,a complementary binary code assisted phase unwrapping method is proposed in this paper.According to the periodic consistency between the wrapping phase and binary codes,the coded patterns are generated.Then the connected domain strategy is performed to calculate the fringe orders using the positive and negative image binaryzation.To avoid the mistake near the periodic boundary,complementary binary code inspired by the complementary Gray code is proposed.The fringe order correction is also discussed for different situations in the first measured period.Only two binary images are needed in the proposed method,and the fringe frequency is not limited.Both the simulation and experiment have verified the feasibility of proposed method. 展开更多
关键词 method. COMPLEMENTARY phase
原文传递
Noise-induced phase transition in the Vicsek model through eigen microstate methodology
5
作者 Yongnan Jia Jiali Han Qing Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期327-338,共12页
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior... This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density. 展开更多
关键词 Vicsek model phase transitions eigen microstate method noise
原文传递
A feedback control method for phase signal demodulation in fber-optic hydrophones
6
作者 Zhiqiang LIU Lei XIA +3 位作者 Qiangfeng LYU Bin WU Ronghua HUAN Zhilong HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期515-528,共14页
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign... In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers. 展开更多
关键词 feedback control method fiber-optic hydrophone acoustic signal detection phase signal
在线阅读 下载PDF
Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
7
作者 马赫阳 张万舟 +2 位作者 田彦婷 丁成祥 邓友金 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期386-400,共15页
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio... The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase. 展开更多
关键词 topological phase transition Ising-XY model Monte Carlo method half vortex
原文传递
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
8
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials GRAPHITE impregnation method oxidation sintering thermal analysis
原文传递
A Multiscale Method for Two-Component,Two-Phase Flow with a Neural Network Surrogate
9
作者 Jim Magiera Christian Rohde 《Communications on Applied Mathematics and Computation》 2024年第4期2265-2294,共30页
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow an... Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed. 展开更多
关键词 phase transition Hyperbolic balance laws for multi-component fluids Multiscale modeling Moving-mesh methods Deep neural networks
在线阅读 下载PDF
Phase-field modeling of effect of Ni on formation and phase transformation of Cu-rich phase in Fe-Cu-Ni alloys
10
作者 Ming-Guang Wei Zhong-Wen Zhang +2 位作者 Min Cui Yuan-Bin Zhang Tong-Guang Zhai 《Chinese Physics B》 2025年第8期735-741,共7页
A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at ... A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at 773 K.The results demonstrated that the Cu core-Ni shell structures form via the decomposition of Cu-Ni co-clusters,which is consistent with previous experimental results.As the Ni content increases,both the volume fraction and number density of Cu-rich precipitates increase,while their size decreases.With the increase in Ni content,the transformation from a Cu to 9R Cu is accelerated,which is the opposite to the result of increasing Mn content.Magnetic energy can increase the nucleation rate of the Cu-rich phase,but it does not affect the phase transformation driving force required for its crystal structure transformation. 展开更多
关键词 phase-field method Cu-rich phase phase transformation magnetic energy
原文传递
ON KIRCHHOFF-HARDY TYPE PROBLEMS INVOLVING DOUBLE PHASE OPERATORS
11
作者 Yun-Ho KIM Taek-Jun JEONG Jun-Yeob SHIM 《Acta Mathematica Scientia》 2025年第5期1814-1854,共41页
This paper is devoted to demonstrating several multiplicity results of nontrivial weak solutions to double phase problems of Kirchhoff type with Hardy potentials.The main features of the paper are the appearance of no... This paper is devoted to demonstrating several multiplicity results of nontrivial weak solutions to double phase problems of Kirchhoff type with Hardy potentials.The main features of the paper are the appearance of non-local Kirchhoff coefficients and the Hardy potential,the absence of the compactness condition of Palais-Smale,and the L^(∞)-bound for any possible weak solution.To establish multiplicity results,we utilize the fountain theorem and the dual fountain theorem as main tools.Also,we give the L^(∞)-bound for any possible weak solution by exploiting the De Giorgi iteration method and a truncated energy technique.As an application,we give the existence of a sequence of infinitely many weak solutions converging to zero in L^(∞)-norm.To derive this result,we employ the modified functional method and the dual fountain theorem. 展开更多
关键词 double phase problems Musielak-Orlicz-Sobolev spaces variational methods multiple solutions De Giorgi iteration method
在线阅读 下载PDF
Biomimetic Structure and Phase Change Materials for Multifunctional Personal Thermal Management
12
作者 Qing Su Guojun Sheng +5 位作者 Yan Li Xiaoping Lu Chao Wang Chenxing Xin Huasheng Wang Hongyong Jiang 《Journal of Bionic Engineering》 2025年第2期513-561,共49页
With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensur... With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research. 展开更多
关键词 Personal thermal management Biomimetic structure phase change material Manufacturing methods Multifunctionality
在线阅读 下载PDF
The boundary effect of QGP droplets and the self-similarity effect of hadrons on QGP–hadron phase transition
13
作者 Tingting Dai Huiqiang Ding +2 位作者 Luan Cheng Weining Zhang Enke Wang 《Communications in Theoretical Physics》 2025年第7期70-81,共12页
We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is... We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is below quantum chromodynamics(QCD)scale,QGP cannot be produced.However,if the transverse momentum changes to a relatively large value,a smallscale QGP droplet is produced.The modified MIT bag model with the multiple reflection expansion method is employed to study the QGP droplet with the curved boundary effect.It is found that the energy density,entropy density and pressure of QGP with the influence are smaller than those without the influence.In the hadron phase,we propose the two-body fractal model(TBFM)to study the self-similarity structure,arising from resonance,quantum correlation and interaction effects.It is observed that the energy density,entropy density and pressure increase due to the self-similarity structure.We calculate the transverse momentum spectra of pions with the self-similarity structure influence,which show good agreement with experimental data.Considering both boundary effect and self-similarity structure influence,our model predicts an increase in the transition temperature compared to the scenarios without these two effects in the High Intensity heavy-ion Accelerator Facility(HIAF)energy region,2.2 GeV to approximately 4.5 GeV. 展开更多
关键词 QGP droplet multiple reflection expansion method self-similarity structure phase transition
原文传递
Efficient removal of impurity Bi element from scrap brass by compound-separation method
14
作者 Fei-ran JIANG Chuan-rong JIAO +6 位作者 Li-juan WANG Rui-lin WU Yan-bin JIANG Qian LEI Meng WANG Zhu XIAO Zhou LI 《Transactions of Nonferrous Metals Society of China》 2025年第6期2074-2090,共17页
Highly efficient removal of impurity Bi element from scrap brass can facilitate the recycling process of brass.The effects of melting temperature,holding time and Mg-Ca alloy content on the removal effect of impurity ... Highly efficient removal of impurity Bi element from scrap brass can facilitate the recycling process of brass.The effects of melting temperature,holding time and Mg-Ca alloy content on the removal effect of impurity Bi element were investigated by compound-separation method.The mechanism of the compound-separation method was revealed for removing the Bi element from a thermodynamic point of view.The results showed that the Bi content was decreased from 1.95 wt.%to 0.178 wt.%at the optimum process parameters of melting temperature of 980°C,holding time of 20 min,and Mg-Ca alloy content of 6 wt.%,achieving a removal rate of 90.9%.A small amount of Ca-Bi compound remained in the brass matrix after refining.NaF flux can effectively wet and adsorb Ca-Bi compounds due to its low viscosity and the function of lowering the surface tension,which facilitate the agglomeration and flotation of Ca-Bi compounds to the melt surface,thereby ensuring the sufficient removal of Bi element. 展开更多
关键词 scrap brass Bi-rich phase Mg−Ca alloying compound-separation method
在线阅读 下载PDF
A mixed phase-field model for fracture propagation behavior in Gulong shale with complex wavy bedding
15
作者 Siwei Meng Zihan Zhang +3 位作者 Wenlong Xu Hao Yu Hengan Wu He Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6308-6323,共16页
Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel... Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel bedding on fracture propagation,while the mechanical properties and mechanisms of fracture propagation remain unclear for rocks with complex wavy bedding(e.g.China’s continentalorigin Gulong shale).Herein,a mixed phase-field fracture model of the wavy-bedding shale was applied,based on the local tension-compression decomposition phase field method(PFM)and geometric structure generation algorithm for the bedding with controllable morphological features.The parametric analysis of fracture propagation behaviors in the case of abundant complex bedding structures showed that with wavy bedding,the vertical fracture propagation rate is far higher than the horizontal propagation rate.Moreover,the development of branch fractures is suppressed during the fracturing process of the wavy-bedding sample,and the stimulated volume is limited,which is different from the characteristic of parallel bedding that promotes horizontal fracture initiation and propagation.The results showed that larger amplitudes,higher frequencies,higher inclination angles,and larger strengths of wavy bedding all promote the formation of vertical penetrating fractures and suppress the growth of branch fractures.Under such circumstances,it is hard to create a well-connected fracture network after fracturing.This research may provide a theoretical basis for understanding fracture behaviors in rocks with such complex wavy bedding. 展开更多
关键词 Continental shale Complex wavy bedding Cracking behavior phase field method Branch fractures
在线阅读 下载PDF
A PCM-based active temperature-preserved coring method for deep sea natural gas hydrate
16
作者 Han Wu Yunqi Hu +4 位作者 Chenghang Fu Ling Chen Zhiqiang He Meng Xu Heping Xie 《International Journal of Mining Science and Technology》 2025年第11期1939-1954,共16页
Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much a... Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much as possible during the coring process is crucial for the assessment of NGH resources.However,most existing NGH coring techniques cannot preserve the in-situ temperature of NGH,leading to distortion of the physical properties of the obtained core,which makes it difficult to effectively guide NGH exploration and development.To overcome this limitation,this study introduces an innovative active temperature-preserved coring method for NGH utilizing phase change materials(PCM).An active temperature-preserved corer(ATPC)is designed and developed,and an indoor experimental system is established to investigate the heat transfer during the coring process.Based on the experimental results under different environment temperatures,a heat transfer model for the entire ATPC coring process has been established.The indoor experimental results are consistent with the theoretical predictions of the heat transfer model,confirming its validity.This model has reconstructed the temperature changes of the NGH core during the coring process,demonstrating that compared to the traditional coring method with only passive temperature-preserved measures,ATPC can effectively reduce the core temperature by more than 5.25℃.With ATPC,at environment temperatures of 15,20,25,and 30℃,the duration of low-temperature state for the NGH core is 53.85,32.87,20.32,and 11.83 min,respectively.These findings provide new perspectives on temperature-preserving core sampling in NGH and provide technical support for exploration and development in NGH. 展开更多
关键词 Deep sea coring Natural gas hydrate Active temperature-preserved method phase change material
在线阅读 下载PDF
A material point finite element method for thermo-hydro-mechanical modeling in poro-elastic media with brittle fracturing
17
作者 Zhaonan Wang Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3299-3315,共17页
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche... In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated. 展开更多
关键词 Thermo-hydro-mechanical(THM)coupling Local thermal non-equilibrium(LTNE) Material point method(MPM) Characteristic-based method phase field model
在线阅读 下载PDF
CKF phase noise suppression algorithm of using the polynomial interpolation for CO-OFDM systems
18
作者 YUAN Jianguo YU Yiran +2 位作者 SU Jie SU Chang PANG Yu 《Optoelectronics Letters》 2025年第8期468-475,共8页
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb... A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect. 展开更多
关键词 polynomial interpolation pilot symbols data processing cubature kalman filter ckf phase noise suppression coherent optical orthogonal frequency division multiplexing co ofdm systemsthe suppression method phase noise
原文传递
Heterodyne Detection of Low-Frequency Fields via Rydberg EIT with Phase Demodulation
19
作者 Shenchao Jin Xiayang Fan +2 位作者 Xin Wang Yi Song Yuan Sun 《Chinese Physics Letters》 2025年第11期89-104,共16页
Recently, the rapid progress of quantum sensing research reveals that Rydberg atoms have great potential in becoming high-precision centimeter-scale antennas for low-frequency fields. In order to facilitate efficient ... Recently, the rapid progress of quantum sensing research reveals that Rydberg atoms have great potential in becoming high-precision centimeter-scale antennas for low-frequency fields. In order to facilitate efficient and reliable detection of low-frequency fields via Rydberg atoms, we designed and implemented a heterodyne method based on the linear response to external signals under the condition of Rydberg electromagnetically induced transparency(EIT). Instead of relying on observing changes in the absorption of light by Rydberg atoms, our method focuses on the phase modulation effect on the probe laser induced by low-frequency fields via the Rydberg EIT mechanism and utilizes a special demodulation process to accurately retrieve signals including both amplitude and phase. The general principles of our method apply to both electric and magnetic fields, and it is even possible to realize a combination of both functionalities in the same apparatus. In particular, we experimentally demonstrate the full cycle of operations with respect to both cases. In measuring low-frequency electric fields,we discover that the Rydberg dipole–dipole interaction among atoms induces a linear superposition of Rydberg states with different angular momentum, generating a first-order response corresponding to the signature of the linear Stark effect. As Rydberg atoms have excellent coupling strengths with electric fields, our results indicate that our method can hopefully achieve high-precision performance for practical tasks in the future. 展开更多
关键词 phase demodulation rydberg atoms Rydberg EIT heterodyne method heterodyne detection quantum sensing research observing changes rydberg electromagnetically induced transparency eit
原文传递
Flat-Band Lieb Electride with Emergent quantum Phase Transitions and Superconductivity
20
作者 Chi Ding Yijie Zhu +6 位作者 Qing Lu Zhongwei Zhang Dexi Shao Tianheng Huang Yu Han Junjie Wang Jian Sun 《Chinese Physics Letters》 2025年第11期300-320,共21页
The Lieb lattice, characterized by its distinctive Dirac cone and flat-band electronic structures, hosts a variety of exotic physical phenomena. However, its realization remains largely confined to artificial lattices... The Lieb lattice, characterized by its distinctive Dirac cone and flat-band electronic structures, hosts a variety of exotic physical phenomena. However, its realization remains largely confined to artificial lattices. In this work, we propose the concept of a Lieb electride, where the non-bound electrons gather at the middle edges,behaving as the quasi-atoms of a Lieb lattice, enabling the emergence of flat bands. Using crystal structure prediction method MAGUS and first-principles calculations, we predict a stable candidate, Ca_(2)I, at ambient pressure. Distinct from conventional electrides with localized electrons at cavity centers, Ca_(2)I features interstitial electrons situated at cavity edges. The resultant flat bands lie close to the Fermi level, giving rise to a pronounced peak in the density of states and leading to Stoner-type ferromagnetism. With increasing pressures, we observe quantum phase transitions from ferromagnetic to non-magnetic and finally to antiferromagnetic orders in Ca_(2)I.Intriguingly, superconductivity emerges in the antiferromagnetic region, suggesting potential competition between these correlated states. Our study not only extends the concepts of electrides but also provides a novel strategy for realizing Lieb lattices through non-bound electrons. This work establishes Ca_(2)I as a promising platform for exploring flat-band physics and correlated electronic states, opening avenues for novel quantum phenomena in electride-based materials. 展开更多
关键词 lieb lattice flat band dirac cone artificial lattices emergence flat bands quantum phase transition lieb electride crystal structure prediction method magus
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部