An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste...An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.展开更多
The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking ...The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis.展开更多
Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based o...Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based on the transient mea- surement and can distinguish the fault of one phase connecting ground. The method has been proved to be in correspondence with the simulation results by Matlab and LabVIEW in practice, The method has merits of simplicity, accuracy and ease of USe.展开更多
Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this lett...Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this letter, we propose and experimentally demonstrate an enhanced long-distance weak signal transmission method assisted by weak measurement. Performing heterodyne detection and light intensity compensation on two nearly symmetric post-selected paths, the method enables real-time estimation of a time-varying phase while maintaining robustness against technical noises proportional to light intensity or photon number, detector common-mode noise, and significant attenuation over long-distance transmission. Experimental results indicate a potential phase sensitivity at the level of 10-8rad even with a signal light intensity attenuation of 48.1 d B. Potentially, combining the adaptive adjustment strategy, the method may provide a viable solution in remote weak signal detection and extraction,thereby contributing to optical integrated communication and sensing.展开更多
Aim to detect the characteristic weak magnetic field signal against the strong noises background. Methods In combination with a low-pass-filter, the correlation output of magne-* tic sensors between the magnetic field...Aim to detect the characteristic weak magnetic field signal against the strong noises background. Methods In combination with a low-pass-filter, the correlation output of magne-* tic sensors between the magnetic field and reference current was utilized to provide a DC output voltage proportional to the applied magnetic induction, computer simulation was* done to investigate the correlation output of the Hall-effect sensors. Results Some analysis results concerning the noise property, harmonic supppression and the sensitivity were given. Conclsion The minimum detection signal of the equipment evolved from the mentioned cor-* relation theory can be 10-6 T. In addition to the DC output, such sensors can also measure the phase of the detected magnetic induction and has good harmonic suppression as well as* noise elimination.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research ins...Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research instrument in proteomics.SPR biosensor can be divided intensity measurement and phase measurement,and the latter possesses higher sensitivity than the former one.This paper attempts to summarize the SPR phase detection theory,discuss the major developments,compare the merits and deficiencies of various methods,and look forward to future prospects.展开更多
In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line sp...In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.展开更多
We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines m...We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.展开更多
For the isomers of amino benzoic acid, including o-, m-, p-amino benzoic acid, the beneficial effects of using the ionic liquid, l-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), as mobile phase additives...For the isomers of amino benzoic acid, including o-, m-, p-amino benzoic acid, the beneficial effects of using the ionic liquid, l-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), as mobile phase additives on retention behavior and separation were investigated. Chromatographic separation of the o-, m-, p-amino benzoic acid was performed on a reversed-phase C18 column by ultraviolet detection at 245 nm. The effects of several chromatographic parameters, concentrations and pH values of [BMIm][BF4] solutions, methanol concentration and length of alkyl chain on different ionic liquids, on the separation and determination of the isomers were evaluated. The optimized chromatographic conditions were established using an aqueous 0.5 mmol/L [BMIm][BF4] solution (pH 3.0)/methanol (40:60, v/v) as mobile phase without need of gradient eiution, with separation of three amino benzoic acids achieved within four min. The calibration curve showed good linearity over the tested range of 2 mg/L to 120 mg/L for the three isomers with a correlation coefficients of 0.9999. The recoveries of the three amino benzoic acids of spiked components were between 99.8% and 100%. The method has been successfully applied to the determination of p-amino benzoic acid in the pharmaceutical, Bromine Mitag Procaine Injection.展开更多
A simple model of the phase-detection autofocus device based on the partially masked sensor pixels is described. The cross-correlation function of the half-images registered by the masked pixels is proposed as a focus...A simple model of the phase-detection autofocus device based on the partially masked sensor pixels is described. The cross-correlation function of the half-images registered by the masked pixels is proposed as a focus function. It is shown that—in such setting—focusing is equivalent to searching of the cross-correlation function maximum. Application of stochastic approximation algorithms to unimodal and non-unimodal focus functions is shortly discussed.展开更多
Microseismic phase detection and arrival picking are critical steps in the processing of hydraulic fracturing microseismic monitoring data.As the signal-to-noise ratios of P-and S-waves diff er because of the infl uen...Microseismic phase detection and arrival picking are critical steps in the processing of hydraulic fracturing microseismic monitoring data.As the signal-to-noise ratios of P-and S-waves diff er because of the infl uence of focal mechanisms,geometry,and background noise,diffi culties are introduced in the eff ective discrimination of seismic phases and the accurate acquisition of arrivals in conventional processing methods.In this paper,we propose a method for identifying microseismic phase arrival time by comprehensively analyzing the variation of moveout curves and combining the intra-event waveform similarities with the energy ratio of multitrace signals.First,a curve-fi tting formula is constructed with perforation arrivals,and event detection is achieved by adopting an energy-weighted similarity coeffi cient that seeks plausible fi tting curves with a sliding time window in continuous microseismic recordings.Then,the P-and S-waves are separated by the fitting parameters.The known arrival time trend of the microseismic phase is employed to calculate residual time corrections.Finally,the accurate arrival results of the microseismic phases can be obtained by picking the arrivals of stacked traces.The reliability and eff ectiveness of the proposed method for microseismic phase detection and arrival picking were determined through tests using field data.Arrival results indicate that the proposed method can improve accuracy compared with the traditional energy ratio method.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous ...Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous reversed phase(NARP) HPLC on C_(18) column with UV detection at 215nm.展开更多
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase fl...Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.展开更多
To provide more intelligence service in the smart library, we need to better perceive the reader’s preferences. In addition to perceiving online records based on readers’ search history and borrowing records, advanc...To provide more intelligence service in the smart library, we need to better perceive the reader’s preferences. In addition to perceiving online records based on readers’ search history and borrowing records, advanced information technologies give us more chance to perceive the behavior of readers in the actual reading process and further discover the need for reading. In this paper, we use CRFID and RNN deep learning network to recognize book motions in the reading process, so as to judge readers’ need degree for the book, which can provide a basis for library book purchases and readers personalized service. In order to improve the recognition accuracy, we use the RSS as well as acceleration magnitude gathered from CRFID as the input data for RNN, and design a new encoding scheme. We trained and tested the deep learning network using real-world data, recorded during actual reading in our lab environment which mimics a typical reading room, from the experimental results, we conclude that our approach is feasible to recognize different reading phase to perceiving the needs of the readers.展开更多
We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the se...We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolutlon of the SPIt sensor is predicted to be 2.2 × 10^-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.展开更多
Since changes in mechanical properties of biological tissues are often closely related to pathology,the viscoelastic properties are important physical parameters for medical diagnosis.A photoacoustic(PA)phase-resolved...Since changes in mechanical properties of biological tissues are often closely related to pathology,the viscoelastic properties are important physical parameters for medical diagnosis.A photoacoustic(PA)phase-resolved method for noninvasively characterizing the biological tissue viscoelasticity has been proposed by Gao et al.[G.Gao,S.Yang,D.Xing,\Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,"Opt.Lett.36,3341–3343(2011)].The mathematical relationship between the PA phase delay and the viscosity–elasticity ratio has been theoretically deduced.Moreover,systems of PA viscoelasticity(PAVE)imaging including PAVE microscopy and PAVE endoscopy were developed,and high-PA-phase contrast images re°ecting the tissue viscoelasticity information have been successfully achieved.The PAVE method has been developed in tumor detection,atherosclerosis characterization and related vascular endoscopy.We reviewed the development of the PAVE technique and its applications in biomedical¯elds.It is believed that PAVE imaging is of great potential in both biomedical applications and clinical studies.展开更多
A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples....A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.展开更多
基金National Key Research and Development Program of China(2022YFB2804401)。
文摘An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.
文摘The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis.
文摘Open phase in three phase induction motors is a common fault that can occur as a result of a fuse blowing or a pro- tective device failing on one phase of the motor. This paper introduces a new method,which is based on the transient mea- surement and can distinguish the fault of one phase connecting ground. The method has been proved to be in correspondence with the simulation results by Matlab and LabVIEW in practice, The method has merits of simplicity, accuracy and ease of USe.
基金supported by the National Natural Science Foundation of China(Grant No.62471289)the Natural Science Foundation of Shanghai (Grant No.24ZR1432900)+1 种基金the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0300703)Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01)。
文摘Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this letter, we propose and experimentally demonstrate an enhanced long-distance weak signal transmission method assisted by weak measurement. Performing heterodyne detection and light intensity compensation on two nearly symmetric post-selected paths, the method enables real-time estimation of a time-varying phase while maintaining robustness against technical noises proportional to light intensity or photon number, detector common-mode noise, and significant attenuation over long-distance transmission. Experimental results indicate a potential phase sensitivity at the level of 10-8rad even with a signal light intensity attenuation of 48.1 d B. Potentially, combining the adaptive adjustment strategy, the method may provide a viable solution in remote weak signal detection and extraction,thereby contributing to optical integrated communication and sensing.
文摘Aim to detect the characteristic weak magnetic field signal against the strong noises background. Methods In combination with a low-pass-filter, the correlation output of magne-* tic sensors between the magnetic field and reference current was utilized to provide a DC output voltage proportional to the applied magnetic induction, computer simulation was* done to investigate the correlation output of the Hall-effect sensors. Results Some analysis results concerning the noise property, harmonic supppression and the sensitivity were given. Conclsion The minimum detection signal of the equipment evolved from the mentioned cor-* relation theory can be 10-6 T. In addition to the DC output, such sensors can also measure the phase of the detected magnetic induction and has good harmonic suppression as well as* noise elimination.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
文摘Surface plasmon resonance (SPR) sensing is an optical method based on evanescent wave.SPR biosensor can detect interaction of label-free biomolecules in real-time.With further development,it can become a research instrument in proteomics.SPR biosensor can be divided intensity measurement and phase measurement,and the latter possesses higher sensitivity than the former one.This paper attempts to summarize the SPR phase detection theory,discuss the major developments,compare the merits and deficiencies of various methods,and look forward to future prospects.
基金supported by the National Natural Science Foundation of China(61372180)the Young Talent Frontier Project of Institute of Acoustics of Chinese Academy of Sciences(Y454341261)
文摘In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.
基金This study is jointly sponsored by the Basic Scientific Research Fee of Institute of Geophysics,China Earthquake Administration(DQJB19A0114)the National Natural Science Foundation of China(41804047).
文摘We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.
基金supported by the Natural Science Foundation of Heilongjiang Province (No. B201307)
文摘For the isomers of amino benzoic acid, including o-, m-, p-amino benzoic acid, the beneficial effects of using the ionic liquid, l-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), as mobile phase additives on retention behavior and separation were investigated. Chromatographic separation of the o-, m-, p-amino benzoic acid was performed on a reversed-phase C18 column by ultraviolet detection at 245 nm. The effects of several chromatographic parameters, concentrations and pH values of [BMIm][BF4] solutions, methanol concentration and length of alkyl chain on different ionic liquids, on the separation and determination of the isomers were evaluated. The optimized chromatographic conditions were established using an aqueous 0.5 mmol/L [BMIm][BF4] solution (pH 3.0)/methanol (40:60, v/v) as mobile phase without need of gradient eiution, with separation of three amino benzoic acids achieved within four min. The calibration curve showed good linearity over the tested range of 2 mg/L to 120 mg/L for the three isomers with a correlation coefficients of 0.9999. The recoveries of the three amino benzoic acids of spiked components were between 99.8% and 100%. The method has been successfully applied to the determination of p-amino benzoic acid in the pharmaceutical, Bromine Mitag Procaine Injection.
基金supported by the NCN grant UMO-2011/01/B/ST7/00666.
文摘A simple model of the phase-detection autofocus device based on the partially masked sensor pixels is described. The cross-correlation function of the half-images registered by the masked pixels is proposed as a focus function. It is shown that—in such setting—focusing is equivalent to searching of the cross-correlation function maximum. Application of stochastic approximation algorithms to unimodal and non-unimodal focus functions is shortly discussed.
基金This work has been funded by the National Key Research and Development Project(2017YFC0307605,2017YFC0307702),National Science and Technology Major Project of China(No.2017ZX05008-008)and State Key Project(2016ZX05051004).The authors also thank Sinopec Oilfield Service Jianghan Corporation for providing the data and support and express their gratitude to the reviewers for their constructive comments.
文摘Microseismic phase detection and arrival picking are critical steps in the processing of hydraulic fracturing microseismic monitoring data.As the signal-to-noise ratios of P-and S-waves diff er because of the infl uence of focal mechanisms,geometry,and background noise,diffi culties are introduced in the eff ective discrimination of seismic phases and the accurate acquisition of arrivals in conventional processing methods.In this paper,we propose a method for identifying microseismic phase arrival time by comprehensively analyzing the variation of moveout curves and combining the intra-event waveform similarities with the energy ratio of multitrace signals.First,a curve-fi tting formula is constructed with perforation arrivals,and event detection is achieved by adopting an energy-weighted similarity coeffi cient that seeks plausible fi tting curves with a sliding time window in continuous microseismic recordings.Then,the P-and S-waves are separated by the fitting parameters.The known arrival time trend of the microseismic phase is employed to calculate residual time corrections.Finally,the accurate arrival results of the microseismic phases can be obtained by picking the arrivals of stacked traces.The reliability and eff ectiveness of the proposed method for microseismic phase detection and arrival picking were determined through tests using field data.Arrival results indicate that the proposed method can improve accuracy compared with the traditional energy ratio method.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
文摘Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous reversed phase(NARP) HPLC on C_(18) column with UV detection at 215nm.
基金funding from CONAHCYT in the form of a scholarship as a member of the National System of Researchers(CVU:969467)the financial support of the FEMSA foundation.
文摘Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.
基金National Key Research and Development Project (2018YFB2200900): Broadband Optical Transceiver Integrated Devices and Modules for Data Center ApplicationsThe General Object of National Natural Science Foundation under Grants (61972273): Research on Adaptive Modulation Theory and Key Technologies for Passive Sensor Systems
文摘To provide more intelligence service in the smart library, we need to better perceive the reader’s preferences. In addition to perceiving online records based on readers’ search history and borrowing records, advanced information technologies give us more chance to perceive the behavior of readers in the actual reading process and further discover the need for reading. In this paper, we use CRFID and RNN deep learning network to recognize book motions in the reading process, so as to judge readers’ need degree for the book, which can provide a basis for library book purchases and readers personalized service. In order to improve the recognition accuracy, we use the RSS as well as acceleration magnitude gathered from CRFID as the input data for RNN, and design a new encoding scheme. We trained and tested the deep learning network using real-world data, recorded during actual reading in our lab environment which mimics a typical reading room, from the experimental results, we conclude that our approach is feasible to recognize different reading phase to perceiving the needs of the readers.
文摘We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolutlon of the SPIt sensor is predicted to be 2.2 × 10^-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.
基金the National Natural Science Foundation of China(Grant Nos.81630046,61627827,61331001 and 91539127)the Science and Technology Planning Project of Guangdong Province,China(Nos.2015B020233016,2014B020215003 and 2014A020215031)+1 种基金the Science and Technology Youth Talent for Special Program of Guangdong,China(Nos.2015TQ01X882)the Distinguished Young Teacher Project in Higher Education of Guangdong,China(No.YQ2015049).
文摘Since changes in mechanical properties of biological tissues are often closely related to pathology,the viscoelastic properties are important physical parameters for medical diagnosis.A photoacoustic(PA)phase-resolved method for noninvasively characterizing the biological tissue viscoelasticity has been proposed by Gao et al.[G.Gao,S.Yang,D.Xing,\Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,"Opt.Lett.36,3341–3343(2011)].The mathematical relationship between the PA phase delay and the viscosity–elasticity ratio has been theoretically deduced.Moreover,systems of PA viscoelasticity(PAVE)imaging including PAVE microscopy and PAVE endoscopy were developed,and high-PA-phase contrast images re°ecting the tissue viscoelasticity information have been successfully achieved.The PAVE method has been developed in tumor detection,atherosclerosis characterization and related vascular endoscopy.We reviewed the development of the PAVE technique and its applications in biomedical¯elds.It is believed that PAVE imaging is of great potential in both biomedical applications and clinical studies.
基金supported by National Key Technology R&D Program in the 11th Five-Year Plan of China(No.2009BADB9B02)
文摘A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.