In fringe projection profilometry 3D measurement systems,the measurement of surfaces with high variability in reflectivity poses a challenge due to the limited dynamic range of cameras.The main solution involves using...In fringe projection profilometry 3D measurement systems,the measurement of surfaces with high variability in reflectivity poses a challenge due to the limited dynamic range of cameras.The main solution involves using multiple exposures to modulate fringe intensity;however,it is inefficient.In this study,we introduce an attention-guided end-to-end phase calculation network to accelerate the multi-exposure structured light process for high dynamic range(HDR)measurements.We use attention modules to guide feature selection,enhancing relevant features and suppressing irrelevant features.Using the 12-step phase-shifting profilometry(PSP)as ground truth,our method accurately extracts the sine and cosine components of the fundamental frequency from a single pattern to retrieve the absolute phases.Tested on our metallic dataset requiring HDR imaging,our method achieves an absolute phase error of 0.084,close to that of the six-step PSP method(0.069),while using only 16.7%of the time.On the ceramic dataset,our method achieves 0.021 phase error,close to that of the four-step PSP(0.012).In quantitative measurements,our method achieves an accuracy of approximately 40μm on standard spheres and plates.Overall,our method preserves the accuracy of multi-exposure PSP methods while significantly accelerating the 3D reconstruction process.展开更多
The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness an...The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.展开更多
Au-Pd-Zr ternary alloy phase diagram at 25℃ was calculated by Panda phase calculation software,and the thermodynamic data were based on three binary alloy phase diagrams:Pd-Au,Au-Zr,and Pd-Zr.Five composition points...Au-Pd-Zr ternary alloy phase diagram at 25℃ was calculated by Panda phase calculation software,and the thermodynamic data were based on three binary alloy phase diagrams:Pd-Au,Au-Zr,and Pd-Zr.Five composition points in the ternary phase diagram were selected to predict the precipitation order.One(32Au-32Pd-36Zr) of the five composition points in ternary phase diagram was chosen to verify the correctness of the phase diagram calculation and the precipitation order by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).The unknown phase in XRD patterns was predicated by EDS and materials studio(MS) software.The experimental results show that there are seven key ternary reactions points and 17 phase regions in all isothermal sections at 25℃.The thermodynamic process and microstructure for the alloy phase can be described in order according to the vertical section in phase diagram.The phase compositions of the chosen one point are consistent with calculation prediction.The unknown phase in XRD patterns should be Zr_2AuPd by the first principle X-ray simulation.展开更多
Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated...Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated and brieflly discussed.展开更多
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties ...Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics.展开更多
Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the si...Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the simplex method. This method is suitable for the calculation of the stable equilibria in complicated systems. For example. calculated results in comparison with experimental results as well as the prediction of new systems were shown in the present work展开更多
High-pressure structural phase transitions in PbTe are investigated by means of the first principles total energy calculations within the generalized gradient approximation (GOAl and local density approximation CLDA...High-pressure structural phase transitions in PbTe are investigated by means of the first principles total energy calculations within the generalized gradient approximation (GOAl and local density approximation CLDA) by using the density functional theory. First principle calculation shows that PbTe is stable with the NaCl-type (B1) structure under amSient conditions and transforms to the CsCl-type (B2) structure under high pressure via an intermediate phase. Two candidate structures of the intermediate phase, namely Prima and Cmcm, are chosen for total energy calculations and discussed. It indicates that the intermediate phase adopts the Pnma structure rather than the Cmcm structure, and lattice parameters of the Pnma phase calculated by using OGA and LDA are in consistent with experimental results.展开更多
SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), ...SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed展开更多
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b...The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material stru...Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.展开更多
1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are mor...1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the展开更多
Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data an...Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data and theoretically calculated values.The results show that the thermodynamically calculated values for the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems agree well with the experimental data.Next,a set of reliable and self-consistent thermodynamic databases was built,and the liquidus projections and invariant points of the sub-ternary systems of the KF-RbF-CsF-BeF_(2)system were calculated.Furthermore,the melting temperature with the corresponding composition was predicted using the phase diagrams calculation technique,and the radial distribution functions,coordination numbers,angular distribution functions,and diffusion coefficients of the quaternary KF-RbF-CsF-BeF_(2)system were calculated using ab initio molecular dynamics.The results show that the quaternary KF-RbF-CsF-BeF_(2)system with the proportion 3.50-28.92-21.78-45.80 mol%or 1.80-35.42-52.40-10.38 mol%is one of the most promising candidate coolants for molten salt reactors in terms of thermodynamics and kinetics.This work provides direct guidelines for the screening and optimization of molten salts in the nuclear energy field.展开更多
Traditional theoretical and empirical calculation methods can guide the design of β-and metastable β-alloys for bio-titanium. However, it is still difficult to obtain novel near-β-Ti alloys with low modulus. This s...Traditional theoretical and empirical calculation methods can guide the design of β-and metastable β-alloys for bio-titanium. However, it is still difficult to obtain novel near-β-Ti alloys with low modulus. This study developed a method that combines machine learning with calculation of phase diagrams(CALPHAD) to facilitate the design of near-β-Ti alloys. An elastic modulus database of Ti–Nb–Zr–Mo–Ta–Sn system was constructed first, and then three features(the electron to atom ratio, mean absolute deviation of atom mass, and mean electronegativity) were selected as the key factors of modulus by performing a three-step feature selection. With these features, a highly accurate model was built for predicting the modulus of near-β-Ti alloys. To further ensure the accuracy of modulus prediction, machine learning with the elastic constants calculated was leveraged by CALPHAD database. The root mean square error of the well-trained model can be as low as 6.75 GPa. Guided by the prediction of machine learning and CALPHAD, three novel near-β-Ti alloys with elastic modulus below 50 GPa were successfully designed in this study. The best candidate alloy(Ti–26Nb–4Zr–4Sn–1Mo–Ta) exhibits an ultra-low modulus(36.6 GPa) after cold rolling with a thickness reduction of 20%. Our method can greatly save time and resources in the development of novel Ti alloys, and experimental verifications have demonstrated the reliability of this method.展开更多
In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calcula...In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.展开更多
Refractory high-entropy alloys(RHEAs)demonstrate exceptional high-temperature performance,extending their application potential beyond superalloys.Understanding the precise phase stability in RHEAs is crucial for desi...Refractory high-entropy alloys(RHEAs)demonstrate exceptional high-temperature performance,extending their application potential beyond superalloys.Understanding the precise phase stability in RHEAs is crucial for designing materials and microstructures with optimized properties.This study establishes a thermodynamic database for the Mo–Nb–Ta–W–Hf–Zr system within a third-generation(3rd-generation)thermodynamic framework,enabling the prediction of phase stabilities in different RHEAs.Initially,a third-generation thermodynamic model was proposed for solid and liquid phases in stable and metastable states,applied to Mo,Nb,Ta,W,Hf,and Zr elements to ensure lattice stability across the temperature range.Subsequently,9 sub-binary and 10 subternary systems within the Mo–Nb–Ta–W–Hf–Zr system were thermodynamically modeled under the 3rd-generation thermodynamic framework,demonstrating that the calculated results agree well with the measurements.By leveraging the optimized binary and ternary coefficients,a thermodynamic database for Mo–Nb–Ta–W–Hf–Zr was established applying the calculation of phase diagram approach.The reliability of this database was confirmed through equilibrium thermodynamic calculations as well as non-equilibrium solidification simulations in the Mo Nb Ta WZr alloys,exhibiting agreement with the experimental data.Ultimately,the database was utilized to predict phase stability in various RHEAs within the Mo–Nb–Ta–W–Hf–Zr system.The current predictions suggest that the precipitation temperatures of hexagonal close-packed_A3 and C15 Laves phases are relatively high,mostly above 1000 K,whereas that of the B2 phase is below 928 K.With an increase in the number of elements,the precipitation behavior in the alloys tends to become more complex,leading to the formation of multiple precipitated phases.展开更多
A niobium microalloyed nitriding steel has been introduced to meet the high demand in modern engine applications,based on compositions of traditional nitriding steels,and on phase calculation and prediction with JmatP...A niobium microalloyed nitriding steel has been introduced to meet the high demand in modern engine applications,based on compositions of traditional nitriding steels,and on phase calculation and prediction with JmatPro software.The new nitriding steel BTHJ-1 shows a better nitriding tendency,as well as a good combination of strength and toughness,while compared with 38CrMoAl and H13 steels.BTHJ-1 steel also shows a better thermal stability when being held at 620℃.Investigations with OM,TEM,XRD have been made so as to get a better understand on the characteristics of BTHJ-1 steel.The quantities optimization of alloy elements and the grain refinement of niobium seem to be reasons for the improved properties of the nitriding steel.展开更多
La-Y-Ni alloys exhibit high discharge capacity due to the formation of AB_(3-3.8)-type(A=La,Y;B=Ni)intermetallic compounds.However,the stable composition and temperature range for this type of phase are rarely reporte...La-Y-Ni alloys exhibit high discharge capacity due to the formation of AB_(3-3.8)-type(A=La,Y;B=Ni)intermetallic compounds.However,the stable composition and temperature range for this type of phase are rarely reported,which restrains the development of La-Y-Ni hydrogen storage alloys with stable structure and high capacity.This paper focuses on the phase equilibria of the La-Y-Ni ternary system in Ni-rich corner.The phase constitution,microstructure,and equilibrated composition were experimentally determined at 1273 and 1148 K using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy-dispersive spectroscopy(EDS).The solubilities of La and Y in the binary compounds were measured.Two ternary compounds,3R-LaY_(2)Ni_(9)with the structure of PuNi3 type and La_(0.5)Y_(0.5)Ni_(5)with the structure of CaCu5 type,existed at both temperatures.Based on the experimental data,the thermodynamic description of LaY-Ni system was assessed by Calculation of Phase Diagram method.The calculated isothermal sections agree with the experimental data.The thermodynamic database is helpful for the design of La-Y-Ni hydrogen storage alloys.展开更多
Optimization of the phase diagram of FeO-V20a system is a part of an on-going research project to develop a self-consistent multi-component thermodynamic database for vanadium slag from hot metal. Due to the lack o{ e...Optimization of the phase diagram of FeO-V20a system is a part of an on-going research project to develop a self-consistent multi-component thermodynamic database for vanadium slag from hot metal. Due to the lack o{ ex- perimental data for optimization, a novel experimental investigation has been carried out by thermal analysis (DSC) with a series of slags on different V2 03 contents (i. e. 3mass%- 12mass%). All available thermodynamic and phase diagram data for the binary systems have been simultaneously optimized with CALPHAD (Calculation of Phase Dia- grams) methods to give one set of model equations for the Gibbs free energy of the liquid slag as functions of compo- sition and temperature. The modified quasi-chemical model was used to describe the binary slag system. It was dem- onstrated that the calculated phase diagram with the optimized parameters was in good agreement with the experi- mental data.展开更多
基金funded by Shenzhen Science and Technology Program(Grant JCYJ20240813112003005)by The Major Key Project of Pengcheng Laboratory(PCL2023A09).
文摘In fringe projection profilometry 3D measurement systems,the measurement of surfaces with high variability in reflectivity poses a challenge due to the limited dynamic range of cameras.The main solution involves using multiple exposures to modulate fringe intensity;however,it is inefficient.In this study,we introduce an attention-guided end-to-end phase calculation network to accelerate the multi-exposure structured light process for high dynamic range(HDR)measurements.We use attention modules to guide feature selection,enhancing relevant features and suppressing irrelevant features.Using the 12-step phase-shifting profilometry(PSP)as ground truth,our method accurately extracts the sine and cosine components of the fundamental frequency from a single pattern to retrieve the absolute phases.Tested on our metallic dataset requiring HDR imaging,our method achieves an absolute phase error of 0.084,close to that of the six-step PSP method(0.069),while using only 16.7%of the time.On the ceramic dataset,our method achieves 0.021 phase error,close to that of the four-step PSP(0.012).In quantitative measurements,our method achieves an accuracy of approximately 40μm on standard spheres and plates.Overall,our method preserves the accuracy of multi-exposure PSP methods while significantly accelerating the 3D reconstruction process.
基金This research is supported by the State Key Fundamental Research Project(G2000067202-1).
文摘The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.
基金financially supported by the National Natural Science Foundation of China (No.51361036 )the Science Foundation of Kunming University of Science and Technology (No.ZDS2010017C)
文摘Au-Pd-Zr ternary alloy phase diagram at 25℃ was calculated by Panda phase calculation software,and the thermodynamic data were based on three binary alloy phase diagrams:Pd-Au,Au-Zr,and Pd-Zr.Five composition points in the ternary phase diagram were selected to predict the precipitation order.One(32Au-32Pd-36Zr) of the five composition points in ternary phase diagram was chosen to verify the correctness of the phase diagram calculation and the precipitation order by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).The unknown phase in XRD patterns was predicated by EDS and materials studio(MS) software.The experimental results show that there are seven key ternary reactions points and 17 phase regions in all isothermal sections at 25℃.The thermodynamic process and microstructure for the alloy phase can be described in order according to the vertical section in phase diagram.The phase compositions of the chosen one point are consistent with calculation prediction.The unknown phase in XRD patterns should be Zr_2AuPd by the first principle X-ray simulation.
文摘Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated and brieflly discussed.
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
文摘Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics.
文摘Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the simplex method. This method is suitable for the calculation of the stable equilibria in complicated systems. For example. calculated results in comparison with experimental results as well as the prediction of new systems were shown in the present work
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘High-pressure structural phase transitions in PbTe are investigated by means of the first principles total energy calculations within the generalized gradient approximation (GOAl and local density approximation CLDA) by using the density functional theory. First principle calculation shows that PbTe is stable with the NaCl-type (B1) structure under amSient conditions and transforms to the CsCl-type (B2) structure under high pressure via an intermediate phase. Two candidate structures of the intermediate phase, namely Prima and Cmcm, are chosen for total energy calculations and discussed. It indicates that the intermediate phase adopts the Pnma structure rather than the Cmcm structure, and lattice parameters of the Pnma phase calculated by using OGA and LDA are in consistent with experimental results.
文摘SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the National Basic Research Program of China under Grant No 2011CB808200the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.
文摘Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.
基金Financial support from the State Key Program of NNSFC (20836009)the NNSFCs (Grants 21106136, 21276194 and 21306136)
文摘1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the
基金supported by the National Natural Science Foundation of China(Nos.12205364 and 12375282)Guangdong Provincial Natural Science Foundation(Nos.2024A1515012570 and 2024A1515010885)the Fundamental Research funds for the Central Universities,Sun Yat sen University。
文摘Thermodynamic optimization of the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems was performed within the framework of phase diagrams calculation.The model parameters were optimized based on experimental data and theoretically calculated values.The results show that the thermodynamically calculated values for the AF-BeF_(2)(A=K,Rb,and Cs),KF-CsF,and RbF-CsF systems agree well with the experimental data.Next,a set of reliable and self-consistent thermodynamic databases was built,and the liquidus projections and invariant points of the sub-ternary systems of the KF-RbF-CsF-BeF_(2)system were calculated.Furthermore,the melting temperature with the corresponding composition was predicted using the phase diagrams calculation technique,and the radial distribution functions,coordination numbers,angular distribution functions,and diffusion coefficients of the quaternary KF-RbF-CsF-BeF_(2)system were calculated using ab initio molecular dynamics.The results show that the quaternary KF-RbF-CsF-BeF_(2)system with the proportion 3.50-28.92-21.78-45.80 mol%or 1.80-35.42-52.40-10.38 mol%is one of the most promising candidate coolants for molten salt reactors in terms of thermodynamics and kinetics.This work provides direct guidelines for the screening and optimization of molten salts in the nuclear energy field.
基金financially supported by the National Natural Science Foundation of China (No.52071339)the Natural Science Foundation of Hunan Province,China (No.2020JJ4739)Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China (No.201009-K)。
文摘Traditional theoretical and empirical calculation methods can guide the design of β-and metastable β-alloys for bio-titanium. However, it is still difficult to obtain novel near-β-Ti alloys with low modulus. This study developed a method that combines machine learning with calculation of phase diagrams(CALPHAD) to facilitate the design of near-β-Ti alloys. An elastic modulus database of Ti–Nb–Zr–Mo–Ta–Sn system was constructed first, and then three features(the electron to atom ratio, mean absolute deviation of atom mass, and mean electronegativity) were selected as the key factors of modulus by performing a three-step feature selection. With these features, a highly accurate model was built for predicting the modulus of near-β-Ti alloys. To further ensure the accuracy of modulus prediction, machine learning with the elastic constants calculated was leveraged by CALPHAD database. The root mean square error of the well-trained model can be as low as 6.75 GPa. Guided by the prediction of machine learning and CALPHAD, three novel near-β-Ti alloys with elastic modulus below 50 GPa were successfully designed in this study. The best candidate alloy(Ti–26Nb–4Zr–4Sn–1Mo–Ta) exhibits an ultra-low modulus(36.6 GPa) after cold rolling with a thickness reduction of 20%. Our method can greatly save time and resources in the development of novel Ti alloys, and experimental verifications have demonstrated the reliability of this method.
基金the financial supports from the Shenzhen Basic Research Project,China(No.JCYJ20170815153210359)the National Natural Science Foundation of China(No.12174210)。
文摘In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.
基金financially supported by the National Natural Science Foundation of China(No.52101012)the Natural Science Foundation of Hebei Province,China(No.E202302154)。
文摘Refractory high-entropy alloys(RHEAs)demonstrate exceptional high-temperature performance,extending their application potential beyond superalloys.Understanding the precise phase stability in RHEAs is crucial for designing materials and microstructures with optimized properties.This study establishes a thermodynamic database for the Mo–Nb–Ta–W–Hf–Zr system within a third-generation(3rd-generation)thermodynamic framework,enabling the prediction of phase stabilities in different RHEAs.Initially,a third-generation thermodynamic model was proposed for solid and liquid phases in stable and metastable states,applied to Mo,Nb,Ta,W,Hf,and Zr elements to ensure lattice stability across the temperature range.Subsequently,9 sub-binary and 10 subternary systems within the Mo–Nb–Ta–W–Hf–Zr system were thermodynamically modeled under the 3rd-generation thermodynamic framework,demonstrating that the calculated results agree well with the measurements.By leveraging the optimized binary and ternary coefficients,a thermodynamic database for Mo–Nb–Ta–W–Hf–Zr was established applying the calculation of phase diagram approach.The reliability of this database was confirmed through equilibrium thermodynamic calculations as well as non-equilibrium solidification simulations in the Mo Nb Ta WZr alloys,exhibiting agreement with the experimental data.Ultimately,the database was utilized to predict phase stability in various RHEAs within the Mo–Nb–Ta–W–Hf–Zr system.The current predictions suggest that the precipitation temperatures of hexagonal close-packed_A3 and C15 Laves phases are relatively high,mostly above 1000 K,whereas that of the B2 phase is below 928 K.With an increase in the number of elements,the precipitation behavior in the alloys tends to become more complex,leading to the formation of multiple precipitated phases.
文摘A niobium microalloyed nitriding steel has been introduced to meet the high demand in modern engine applications,based on compositions of traditional nitriding steels,and on phase calculation and prediction with JmatPro software.The new nitriding steel BTHJ-1 shows a better nitriding tendency,as well as a good combination of strength and toughness,while compared with 38CrMoAl and H13 steels.BTHJ-1 steel also shows a better thermal stability when being held at 620℃.Investigations with OM,TEM,XRD have been made so as to get a better understand on the characteristics of BTHJ-1 steel.The quantities optimization of alloy elements and the grain refinement of niobium seem to be reasons for the improved properties of the nitriding steel.
基金financially supported by the National Key R&D Program of China(No.2021YFB3502200)National Natural Science Foundation of China(No.51734002)+1 种基金Science and Technology Committee of Shanghai(Nos.19010500400 and 19DZ2252900)Shanghai Rising-Star Program(No.21QA1403200)。
文摘La-Y-Ni alloys exhibit high discharge capacity due to the formation of AB_(3-3.8)-type(A=La,Y;B=Ni)intermetallic compounds.However,the stable composition and temperature range for this type of phase are rarely reported,which restrains the development of La-Y-Ni hydrogen storage alloys with stable structure and high capacity.This paper focuses on the phase equilibria of the La-Y-Ni ternary system in Ni-rich corner.The phase constitution,microstructure,and equilibrated composition were experimentally determined at 1273 and 1148 K using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy-dispersive spectroscopy(EDS).The solubilities of La and Y in the binary compounds were measured.Two ternary compounds,3R-LaY_(2)Ni_(9)with the structure of PuNi3 type and La_(0.5)Y_(0.5)Ni_(5)with the structure of CaCu5 type,existed at both temperatures.Based on the experimental data,the thermodynamic description of LaY-Ni system was assessed by Calculation of Phase Diagram method.The calculated isothermal sections agree with the experimental data.The thermodynamic database is helpful for the design of La-Y-Ni hydrogen storage alloys.
基金Item Sponsored by National Natural Science Foundation of China(51090382)
文摘Optimization of the phase diagram of FeO-V20a system is a part of an on-going research project to develop a self-consistent multi-component thermodynamic database for vanadium slag from hot metal. Due to the lack o{ ex- perimental data for optimization, a novel experimental investigation has been carried out by thermal analysis (DSC) with a series of slags on different V2 03 contents (i. e. 3mass%- 12mass%). All available thermodynamic and phase diagram data for the binary systems have been simultaneously optimized with CALPHAD (Calculation of Phase Dia- grams) methods to give one set of model equations for the Gibbs free energy of the liquid slag as functions of compo- sition and temperature. The modified quasi-chemical model was used to describe the binary slag system. It was dem- onstrated that the calculated phase diagram with the optimized parameters was in good agreement with the experi- mental data.