This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case ...This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case of the open question presented by Yan et al.,and the method potentially provides a way to study the monotonicity of c0(h)for general m∈N^(+).展开更多
This paper concerns the monotonicity of limit wave speed c0(h) for the perturbed g Kd V equation with general even m.We show that c0(h) is decreasing.Our results give partial answer to the open problem presented by Ya...This paper concerns the monotonicity of limit wave speed c0(h) for the perturbed g Kd V equation with general even m.We show that c0(h) is decreasing.Our results give partial answer to the open problem presented by Yan et al.(Math.Model.Anal.,19,537-555,2014).展开更多
In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,u...In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.展开更多
In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational princi...In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
In this article, we employ the perturbed Fokas-Lenells equation(FLE), which represents recent electronic communications. The Riccati-Bernoulli Sub-ODE method which does not depend on the balance rule is used for thefi...In this article, we employ the perturbed Fokas-Lenells equation(FLE), which represents recent electronic communications. The Riccati-Bernoulli Sub-ODE method which does not depend on the balance rule is used for thefirst time to obtain the new exact and solitary wave solutions of this equation. This technique is direct, effective and reduces the large volume of calculations.展开更多
The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via th...The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.展开更多
A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we c...A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we convert the PAKNS system into the simple forms, which are four variable separation equations, then obtain a quite general solution. Some special localized coherent structures like fractal dromions and fractal lumps of this model are constructed by selecting some types of lower-dimensional fractal patterns.展开更多
New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known...New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known results.展开更多
Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an...Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design ...Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design techniques for the prescribed-time stabilization of regular linear systems are typically not suitable here. To solve the problem, the decoupling transformation techniques for time-varying singularly perturbed systems are combined with linear time-varying high gain feedback design techniques.展开更多
Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symm...Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.展开更多
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi...This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.展开更多
This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. Fi...This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in...Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deforma- tion of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.展开更多
The Melnikov method was extended to perturbed planar non-Hamiltonian integrable systems with slowly-varying angle parameters. Based on the analysis of the geometric structure of unperturbed systems, the condition of t...The Melnikov method was extended to perturbed planar non-Hamiltonian integrable systems with slowly-varying angle parameters. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was established. The generalized Melnikov function of the perturbed system was presented by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters. Chaos may occur in the system if the generalized Melnikov function has simple zeros.展开更多
This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feed...This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
基金Supported by the National Natural Science Foundation of China(12071162)the Natural Science Foundation of Fujian Province(2021J01302)the Fundamental Research Funds for the Central Universities(ZQN-802)。
文摘This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case of the open question presented by Yan et al.,and the method potentially provides a way to study the monotonicity of c0(h)for general m∈N^(+).
基金Supported by the National Natural Science Foundation of China (12071162)the Natural Science Foundation of Fujian Province (2025J01168)。
文摘This paper concerns the monotonicity of limit wave speed c0(h) for the perturbed g Kd V equation with general even m.We show that c0(h) is decreasing.Our results give partial answer to the open problem presented by Yan et al.(Math.Model.Anal.,19,537-555,2014).
文摘In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.
基金the National Natural Science Foundation of China (No.19772027)the Shanghai Municipal Development Foundation of Science and Technology(No.98JC14032)
文摘In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘In this article, we employ the perturbed Fokas-Lenells equation(FLE), which represents recent electronic communications. The Riccati-Bernoulli Sub-ODE method which does not depend on the balance rule is used for thefirst time to obtain the new exact and solitary wave solutions of this equation. This technique is direct, effective and reduces the large volume of calculations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007, the China Postdoctoral Science Foundation, and the Natural Science Foundation of Shanxi Province under Grant No. 2005A13
文摘The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.
文摘A simple and direct method is applied to solving the (2+1)-dimensional perturbed Ablowitz–Kaup–Newell–Segur system (PAKNS). Starting from a special B?cklund transformation and the variable separation approach, we convert the PAKNS system into the simple forms, which are four variable separation equations, then obtain a quite general solution. Some special localized coherent structures like fractal dromions and fractal lumps of this model are constructed by selecting some types of lower-dimensional fractal patterns.
基金the Science Foundation of Hunan Educational Committee
文摘New oscillation criteria for the second order perturbed differential equation are presented. The special case of the results includes the corresponding results in previous papers, extends and unifies a number of known results.
基金the Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthersis Processing
文摘Perturbation method of boundary geometry(PMOBG) used in Lapiacian problems is dealt with and the three--term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
基金supported by the National Natural Science Foundation of China(62173152,62103156,62233006)the Natural Science Foundation of Hubei Province of China(2021CFB052)the China Postdoctoral Science Foundation(2022M721249)。
文摘Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design techniques for the prescribed-time stabilization of regular linear systems are typically not suitable here. To solve the problem, the decoupling transformation techniques for time-varying singularly perturbed systems are combined with linear time-varying high gain feedback design techniques.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 10735030, 10475055, and 90503006; the Natural Science Research Plan in Shaanxi Province under Grant No. SJ08A09; the Research Fund of Postdoctoral of China under Grant No. 20070410727;the Research Found of Shaanxi Normal University
文摘Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371098 and 10447007the Natural Science Foundation of Shanxi Province of China under Grant No.2005A13
文摘This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.
文摘This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
基金supported by the National Natural Science Foundation of China (10472004)
文摘Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deforma- tion of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.
文摘The Melnikov method was extended to perturbed planar non-Hamiltonian integrable systems with slowly-varying angle parameters. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was established. The generalized Melnikov function of the perturbed system was presented by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters. Chaos may occur in the system if the generalized Melnikov function has simple zeros.
基金supported by Russian Foundation for Basic Research(No.15-08-06859a)and by the Ministry of Education and Science of the Russian Federation in the framework of the basic part of the state order(No.2.8629.2017).
文摘This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.