The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimiz...The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimization often uses idealized wake models,neglecting the influence of wind shear at different elevations,which leads to a lack of precision in estimating wake effects and fails to meet the accuracy and reliability requirements of practical engineering.To address this,we have constructed a three-dimensional 3D wind farm optimization model that incorporates elevation,utilizing a 3D wake model to better reflect real-world conditions.We aim to assess the optimization state of the algorithm and provide strong incentives at the right moments to ensure continuous evolution of the population.To this end,we propose an evolutionary adaptation degreeguided genetic algorithm based on power-law perturbation(PPGA)to adapt multidimensional conditions.We select the offshore wind power project in Nantong,Jiangsu,China,as a study example and compare PPGA with other well-performing algorithms under this practical project.Based on the actual wind condition data,the experimental results demonstrate that PPGA can effectively tackle this complex problem and achieve the best power efficiency.展开更多
Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is estab...Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.展开更多
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP23K24899)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145).
文摘The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimization often uses idealized wake models,neglecting the influence of wind shear at different elevations,which leads to a lack of precision in estimating wake effects and fails to meet the accuracy and reliability requirements of practical engineering.To address this,we have constructed a three-dimensional 3D wind farm optimization model that incorporates elevation,utilizing a 3D wake model to better reflect real-world conditions.We aim to assess the optimization state of the algorithm and provide strong incentives at the right moments to ensure continuous evolution of the population.To this end,we propose an evolutionary adaptation degreeguided genetic algorithm based on power-law perturbation(PPGA)to adapt multidimensional conditions.We select the offshore wind power project in Nantong,Jiangsu,China,as a study example and compare PPGA with other well-performing algorithms under this practical project.Based on the actual wind condition data,the experimental results demonstrate that PPGA can effectively tackle this complex problem and achieve the best power efficiency.
基金the National Natural Science Foundation of China(Nos.12272172 and 11847009)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB580005)+1 种基金the Youth Talent Promotion Project from China Association for Science and Technology(No.2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.