Due to the atomic-level centrosymmetric spontaneous polarization,antiferroelectric materials exhibit a sensitively nonlinear capacitive response to plural physic fields(mainly electric field and temperature)in a certa...Due to the atomic-level centrosymmetric spontaneous polarization,antiferroelectric materials exhibit a sensitively nonlinear capacitive response to plural physic fields(mainly electric field and temperature)in a certain range,consequently leading to some superb material properties,e.g.,ripple suppression,elec-trocaloric cooling,and dielectric energy storage.However,there are many cognitive blanks about how this exotic multi-field relationε(E_(DC),T)is influenced and manipulated via microscopic structures in the anti-ferroelectrics.In this work,the classic antiferroelectric ceramics PLZT were selected to see this intelligent effect,based on a quad-parameterizedε(E_(DC))relation on the dependence of T.εrelations were studied under different material compositions,temperature,frequency,AC electric field,and DC electric field,re-vealing lattice/domain structure evolution and the underlying mechanism.The inherent phase stability,introduced random field,and hierarchical hysteresis states were found to co-dominate this multi-field nonlinear relation.This work would not only contribute to future progress in the current applications(ripple suppression/electrocaloric cooling/dielectric energy storage)but imply the possibility of co-sensing temperature and electric potential simply and smartly.展开更多
A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the...A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.展开更多
A series of Sr_(1-1.5x)Lu_(x)TiO_(3)(x=0,0.005,0.01,0.015,and 0.02)ceramics was sintered under an air at-mosphere through the solid-state reaction method.The results show that doping with Lu^(3+)consid-erably enhances...A series of Sr_(1-1.5x)Lu_(x)TiO_(3)(x=0,0.005,0.01,0.015,and 0.02)ceramics was sintered under an air at-mosphere through the solid-state reaction method.The results show that doping with Lu^(3+)consid-erably enhances material permittivity.The ceramic with x=0.01 exhibits a colossal permittivity(CP)of~101000 with a tanδof~0.16 at a frequency of 1 kHz,demonstrating enhanced stability over a wide temperature(30-300℃)and frequency(102-106 Hz)range.Based on the analysis of dielectric relaxation,X-ray photoelectron spectroscopy(XPS),and the universal dielectric response law,the CP effect is primarily due to the formation of defect dipoles,which are correlated with the presence of oxygen vacancies,such as Ti^(3+)-V_(O)^(¨)-Ti^(3+),V_(Sr)″-V_(O)^(¨),LuTi′-V_(O)^(¨)-Ti^(3+),and Lu_(Sr)·-Lu_(Ti)′-V_(O)^(¨)-Ti^(3+).These defect dipoles serve to pin electrons,limiting long-range transitions,and enhancing local po-larization.Doping with Lu^(3+)also induces a secondary Lu_(2)Ti_(2)O_(7)phase,which was characterized by X-ray diffraction(XRD)and energy-dispersive X-ray spectroscopy(EDS).The results generated in this study can inform the development and application of new CP materials based on SrTiO_(3).展开更多
Wettability has complex effects on the physical properties of reservoir rocks.The wettability of rocks should be characterized accurately to explore and develop oil and gas.Researchers have studied the rock wettabilit...Wettability has complex effects on the physical properties of reservoir rocks.The wettability of rocks should be characterized accurately to explore and develop oil and gas.Researchers have studied the rock wettability by dielectric spectra which contained abundant information.To study the rock wettability from dielectric dispersion,four rock samples with different wettabilities were used to design an experimental measurement flow.The relative dielectric permittivity in the frequency range of 100 Hz-10MHz and nuclear magnetic resonance T_(2)spectra of the samples were obtained.Subsequently,the wettabilities of the rocks were verified by the T_(2)spectra.The dielectric dispersions of the samples under different conditions were analyzed.Furthermore,the simulated-annealing(SA)algorithm was used to invert the wettability and related parameters of the rocks by a dielectric dispersion model.The results indicated that the dielectric permittivity of lipophilic rocks is lower than that of hydrophilic rocks,and that the dielectric permittivity of hydrophilic rocks decreases faster as the frequency increases.The dielectric permittivity in the high-frequency band is associated with the water content.The rock wettability parameters obtained via inversion agreed well with the T_(2)spectra,and the saturation index of the rocks.The errors between the rock permittivity calculated by the inverted parameters and the experimentally measured values were minor,indicating that rock wettability could be accurately characterized using dielectric dispersion data.展开更多
Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received wides...Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.展开更多
Composites featuring negative permittivity have garnered significant attention for their potential in novel capacitance designs,coil-less electrical inductors,and electromagnetic shielding applications.In this study,w...Composites featuring negative permittivity have garnered significant attention for their potential in novel capacitance designs,coil-less electrical inductors,and electromagnetic shielding applications.In this study,we prepared polyvinylidene fluoride(PVDF)matrix composites filled with ZrO_(2)/C nanoparticles de-rived from metal-organic frameworks(MOFs)via a hot-pressing method.With an increase in the ZrO_(2)/C content to 30 wt.%,electrical percolation was observed,accompanied by a transition mechanism from hopping conduction to metal-like conduction.This enabled the realization of ZrO_(2)/C/PVDF composites with tailorable negative permittivity properties,attributed to the plasmonic oscillation of free electrons in the composites beyond the percolation threshold(30 wt.%).Furthermore,the permittivity transition along to a shift in the electrical behavior of the percolative composites from capacitive to inductive.We explored the regulatory mechanism behind the negative permittivity in this random composite system,and our findings highlight the potential of these tunable negative permittivity media as promising candi-dates for diverse electromagnetic applications.展开更多
Flexible composites with negative permittivity have a very broad development prospect in flexible electronics and wearable devices.Currently,how to control the negative permittivity except for from their intrinsic pro...Flexible composites with negative permittivity have a very broad development prospect in flexible electronics and wearable devices.Currently,how to control the negative permittivity except for from their intrinsic properties of components is still a challenge.In this study,the negative permittivity and frequency dispersion were adjusted by changing the heat treatment temperature.Polyvinylidene fluoride(PVDF)was selected as the flexible matrix and reduced graphene oxide(rGO)as the functional filler to prepare rGO/PVDF membranous composites.The negative permittivity was observed in rGO/PVDF composites film,and the effect of heat treatment temperature on the negative permittivity was further studied.It indicated that a higher heat treatment temperature contributed to the formation of conductive network,so as to obtaining negative permittivity.When the molding temperature was 70℃,the negative permittivity spectrum conformed to the Drude model was only observed in the composites with 35 wt%content of rGO.After the heat treatment temperature reached 180℃,when the content of rGO decreased to 25 wt%,the composites film achieved negative permittivity(~-10),which had a low-frequency dispersion in the test frequency range.The negative permittivity of in composites can be regulated by adjusting the heat treatment temperature,which promotes the application and development of flexible metamaterials in underwater sensing and detection,etc.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model...The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model is often used to fit the permittivity data.However,existing fitting methods such as the least squares and particle swarm optimization methods are often computationally complex and require preset initial values.Therefore,a simpler calculation method of the relaxation parameters considering the geometric characteristics of the permittivity spectrum is proposed.It is based on the relationship between the Cole-Cole relaxation parameters and the Cole-Cole diagram,which is fitted by a geometric method.First,the concepts of the Cole-Cole parameters and the diagram are introduced,and then the process of obtaining the parameters from the complex permittivity measurement data is explained.Taking baijiu with 56%alcohol by volume(ABV)as an example,the fitting is better than the least squares method and similar to the particle swarm optimization.This method is then used for the parameter fitting of baijiu with ABV of 42-52%,and the average error is less than 1%,demonstrating its wider applicability.Finally,a prediction model is used for baijiu with 53%ABV,and the error is only 1.51%.Hence,the method can be applied to the measurement of ABV of baijiu.展开更多
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
Negative permittivity has been widely studied in various metamaterials and percolating composites, of which the anomalous dielectric behavior was attributed to critical structural properties of building blocks.Herein,...Negative permittivity has been widely studied in various metamaterials and percolating composites, of which the anomalous dielectric behavior was attributed to critical structural properties of building blocks.Herein, mono-phase ceramics of indium tin oxides(ITO) were sintered for epsilon-negative materials in MHz-k Hz frequency regions. Electrical conductivity and complex permittivity were analyzed with DrudeLorentz oscillator model. Carriers’ characters were measured based on Hall effect and the magnitude and frequency dispersion of negative permittivity were mainly determined by carrier concentration.Temperature-dependent dielectric properties further proved the epsilon-negative behaviors were closely associated with free carriers’ collective responses. It’s found that negative permittivity of ITO ceramics was mainly caused by plasma oscillations of free carriers, while the dielectric loss was mainly attributed to conduction loss. Negative permittivity realized here was related to materials intrinsic nature and this work preliminarily determined the mechanism of negative permittivity in doped ceramics from the perspective of carriers.展开更多
We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal...We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε 〈 0 and μ 〉 0, or μ-negative materials (MNMs) with ε 〉 0 and μ 〈 0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.展开更多
Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The result...Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 10~2 Hz and was 26 times that of the pure PI.展开更多
This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measur...This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measurements show that nanocrystalline magnetic phase (α-Fe) has been formed in the amorphous matrix when it was annealed at 600℃. Hard magnetic phase (Fe2B) was formed in the microwires annealed at 750℃, which increases the magnetic coercivity. Microwave permittivity and permeability are found to be dependent on the microstruetures. The permittivity fitting results show that multi Lorentzian dispersion processes exist. For microwires annealed at 750℃, their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600℃. The microwave absorption performance of microwires annealed at 600℃ is found better than microwires annealed at 750℃.展开更多
Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05w...Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05wasobtained in x=0.05 Sr1-1.5xBixTiO3 ceramics.In addition,the dielectric constant is maintained at a value greater than 104 in the range of 102-105 Hz and almost frequency independent.Phase structure analysis and density functional theory calculations suggest that the Bi·Sr-V"Sr-Bi·Sr defect complex with hole-pinned defect-dipoles maybe responsible for the high-performance CP properties.This work gives a new way to achieve high performance CP materials in ABO3 perovskite ceramics.展开更多
A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gall...A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gallium arsenide (GaAs) plane in the top layer. The simulated results show that a perfect absorption in the region from 481.2 to 684.0THz can be obtained for either transverse electric or magnetic polarization wave due to the coupling effect between the material of GaAs and gold. The metamaterial is ultra-thin, having the total thickness of 56nm, which is less than one-tenth resonance wavelength, and the absorption coefficients at the three resonance wavelengths are above 90%. Moreover, the effective medium theory, electric field and surface current distributions are adopted to explain the physical mechanism of the absorption, and the permittivity sensing applications are also discussed. As a result, the proposed structure can be used in many areas, such as solar cell, sensors, and integrated photodetectors.展开更多
The development of negative permittivity materials in multifunctional applications requests expansion of their operating frequency and improvement of stability of negative permittivity.Low electron density is benefici...The development of negative permittivity materials in multifunctional applications requests expansion of their operating frequency and improvement of stability of negative permittivity.Low electron density is beneficial to reduce plasma frequency so that negative permittivity is achieved in kHz region.Negative permittivity achieved by percolating composites is restricted in practicality due to its instability nature at high temperatures.To achieve temperature-stable negative permittivity in kHz region,monophase La_(1-x)Ba_(x)CoO_(3)ceramics were prepared,and the transition from dielectric to metal was elaborated in the perspective of electrical conductivity and negative permittivity.The plasma-like negative permittivity is attained in kHz region,which is interpreted by the collective oscillation of low electron density.The temperature-stable negative permittivity is based on the fact that the plasmonic state will not be undermined at high temperatures.In addition,zero-crossing behavior of real permittivity is observed in La_(0.9)Ba_(0.1)CoO_(3)sample,which provides a promising alternative to designing epsilon-near-zero materials.This work makes the La_(1-x)Ba_(x)CoO_(3)system a source material for achieving effective negative permittivity.展开更多
Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low...Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low dielectric loss,voltage stability is an essential property for CP materials utilized in high-power and high-energy density storage devices.Unfortunately,the voltage stability of CP materials based on codoped TiO_(2) does not catch enough attention.Here,we propose a strategy to enhance the voltage stability of co-doped TiO_(2),where different ionic defect clusters are formed by two acceptor ions with different radii to localize free carriers and result in high performance CP materials.The(Ta+Al+La)co-doped TiO_(2) ceramic with suitable La/Al ratio exhibits colossal permittivity with excellent temperature stability as well as outstanding dc bias stability.The density functional theory analysis suggests that La^(3+)Al^(3+)V_(0)Ti^(3+)defect clusters and Ta^(5+)-Al^(3+)pairs are responsible for the excellent dielectric properties in(Ta+Al+La)co-doped TiO_(2).The results and mechanisms presented in this work open up a feasible route to design high performance CP materials via defect engineering.展开更多
Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideratio...Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.展开更多
Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(...Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.U2002217,11774366 and 52102342).
文摘Due to the atomic-level centrosymmetric spontaneous polarization,antiferroelectric materials exhibit a sensitively nonlinear capacitive response to plural physic fields(mainly electric field and temperature)in a certain range,consequently leading to some superb material properties,e.g.,ripple suppression,elec-trocaloric cooling,and dielectric energy storage.However,there are many cognitive blanks about how this exotic multi-field relationε(E_(DC),T)is influenced and manipulated via microscopic structures in the anti-ferroelectrics.In this work,the classic antiferroelectric ceramics PLZT were selected to see this intelligent effect,based on a quad-parameterizedε(E_(DC))relation on the dependence of T.εrelations were studied under different material compositions,temperature,frequency,AC electric field,and DC electric field,re-vealing lattice/domain structure evolution and the underlying mechanism.The inherent phase stability,introduced random field,and hierarchical hysteresis states were found to co-dominate this multi-field nonlinear relation.This work would not only contribute to future progress in the current applications(ripple suppression/electrocaloric cooling/dielectric energy storage)but imply the possibility of co-sensing temperature and electric potential simply and smartly.
基金Project supported by the National Natural Science Foundation of China(Grant No.51277138)the Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2021JM-442)the Fund from the Shaanxi Provincial Science and Technology Department for Qin Chuangyuan Scientist+Engineer Team(Grant No.2024QCY-KXJ-194)。
文摘A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.
基金Project supported by the fund of the Major Science and Technology Programs of Yunnan Province(202102AB080008)the Science and Technology Program of Yunnan Precious Metal Laboratory(YPML-2022050205,YPML-2022050219)。
文摘A series of Sr_(1-1.5x)Lu_(x)TiO_(3)(x=0,0.005,0.01,0.015,and 0.02)ceramics was sintered under an air at-mosphere through the solid-state reaction method.The results show that doping with Lu^(3+)consid-erably enhances material permittivity.The ceramic with x=0.01 exhibits a colossal permittivity(CP)of~101000 with a tanδof~0.16 at a frequency of 1 kHz,demonstrating enhanced stability over a wide temperature(30-300℃)and frequency(102-106 Hz)range.Based on the analysis of dielectric relaxation,X-ray photoelectron spectroscopy(XPS),and the universal dielectric response law,the CP effect is primarily due to the formation of defect dipoles,which are correlated with the presence of oxygen vacancies,such as Ti^(3+)-V_(O)^(¨)-Ti^(3+),V_(Sr)″-V_(O)^(¨),LuTi′-V_(O)^(¨)-Ti^(3+),and Lu_(Sr)·-Lu_(Ti)′-V_(O)^(¨)-Ti^(3+).These defect dipoles serve to pin electrons,limiting long-range transitions,and enhancing local po-larization.Doping with Lu^(3+)also induces a secondary Lu_(2)Ti_(2)O_(7)phase,which was characterized by X-ray diffraction(XRD)and energy-dispersive X-ray spectroscopy(EDS).The results generated in this study can inform the development and application of new CP materials based on SrTiO_(3).
基金supported by the Beijing Municipal Natural Science Foundation(1242025)。
文摘Wettability has complex effects on the physical properties of reservoir rocks.The wettability of rocks should be characterized accurately to explore and develop oil and gas.Researchers have studied the rock wettability by dielectric spectra which contained abundant information.To study the rock wettability from dielectric dispersion,four rock samples with different wettabilities were used to design an experimental measurement flow.The relative dielectric permittivity in the frequency range of 100 Hz-10MHz and nuclear magnetic resonance T_(2)spectra of the samples were obtained.Subsequently,the wettabilities of the rocks were verified by the T_(2)spectra.The dielectric dispersions of the samples under different conditions were analyzed.Furthermore,the simulated-annealing(SA)algorithm was used to invert the wettability and related parameters of the rocks by a dielectric dispersion model.The results indicated that the dielectric permittivity of lipophilic rocks is lower than that of hydrophilic rocks,and that the dielectric permittivity of hydrophilic rocks decreases faster as the frequency increases.The dielectric permittivity in the high-frequency band is associated with the water content.The rock wettability parameters obtained via inversion agreed well with the T_(2)spectra,and the saturation index of the rocks.The errors between the rock permittivity calculated by the inverted parameters and the experimentally measured values were minor,indicating that rock wettability could be accurately characterized using dielectric dispersion data.
基金supported by the National Key Basic Research Program of China (2022YFA1402904)Basic Research Project of Shanghai Science and Technology Innovation Action (grant number 24CL2900900)the National Natural Science Foundation of China (grant number 61904034)
文摘Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.
基金National Natural Science Foundation of China(No.52272117)National Key Research and Development Program of China(Nos.2022YFB3505104,2022YFB3706604)National Youth Fund(No.52207239).
文摘Composites featuring negative permittivity have garnered significant attention for their potential in novel capacitance designs,coil-less electrical inductors,and electromagnetic shielding applications.In this study,we prepared polyvinylidene fluoride(PVDF)matrix composites filled with ZrO_(2)/C nanoparticles de-rived from metal-organic frameworks(MOFs)via a hot-pressing method.With an increase in the ZrO_(2)/C content to 30 wt.%,electrical percolation was observed,accompanied by a transition mechanism from hopping conduction to metal-like conduction.This enabled the realization of ZrO_(2)/C/PVDF composites with tailorable negative permittivity properties,attributed to the plasmonic oscillation of free electrons in the composites beyond the percolation threshold(30 wt.%).Furthermore,the permittivity transition along to a shift in the electrical behavior of the percolative composites from capacitive to inductive.We explored the regulatory mechanism behind the negative permittivity in this random composite system,and our findings highlight the potential of these tunable negative permittivity media as promising candi-dates for diverse electromagnetic applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52101178 and 52271182)the Natural Science Foundation of Shanghai(No.22ZR1426800)+3 种基金the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(No.YESS20200257)Shanghai Pujiang Program(No.22PJ1411300)the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-10-E00053)the Natural Science Foundation of Shandong Province(No.ZR2021QE090)。
文摘Flexible composites with negative permittivity have a very broad development prospect in flexible electronics and wearable devices.Currently,how to control the negative permittivity except for from their intrinsic properties of components is still a challenge.In this study,the negative permittivity and frequency dispersion were adjusted by changing the heat treatment temperature.Polyvinylidene fluoride(PVDF)was selected as the flexible matrix and reduced graphene oxide(rGO)as the functional filler to prepare rGO/PVDF membranous composites.The negative permittivity was observed in rGO/PVDF composites film,and the effect of heat treatment temperature on the negative permittivity was further studied.It indicated that a higher heat treatment temperature contributed to the formation of conductive network,so as to obtaining negative permittivity.When the molding temperature was 70℃,the negative permittivity spectrum conformed to the Drude model was only observed in the composites with 35 wt%content of rGO.After the heat treatment temperature reached 180℃,when the content of rGO decreased to 25 wt%,the composites film achieved negative permittivity(~-10),which had a low-frequency dispersion in the test frequency range.The negative permittivity of in composites can be regulated by adjusting the heat treatment temperature,which promotes the application and development of flexible metamaterials in underwater sensing and detection,etc.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
基金financially supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_0099)。
文摘The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model is often used to fit the permittivity data.However,existing fitting methods such as the least squares and particle swarm optimization methods are often computationally complex and require preset initial values.Therefore,a simpler calculation method of the relaxation parameters considering the geometric characteristics of the permittivity spectrum is proposed.It is based on the relationship between the Cole-Cole relaxation parameters and the Cole-Cole diagram,which is fitted by a geometric method.First,the concepts of the Cole-Cole parameters and the diagram are introduced,and then the process of obtaining the parameters from the complex permittivity measurement data is explained.Taking baijiu with 56%alcohol by volume(ABV)as an example,the fitting is better than the least squares method and similar to the particle swarm optimization.This method is then used for the parameter fitting of baijiu with ABV of 42-52%,and the average error is less than 1%,demonstrating its wider applicability.Finally,a prediction model is used for baijiu with 53%ABV,and the error is only 1.51%.Hence,the method can be applied to the measurement of ABV of baijiu.
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
基金supported by the National Natural Science Foundation of China(Nos.51771104,51871146,51971119)the Future Plan for Young Talent of Shandong University(No.2016WLJH40)the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-10-E00053)。
文摘Negative permittivity has been widely studied in various metamaterials and percolating composites, of which the anomalous dielectric behavior was attributed to critical structural properties of building blocks.Herein, mono-phase ceramics of indium tin oxides(ITO) were sintered for epsilon-negative materials in MHz-k Hz frequency regions. Electrical conductivity and complex permittivity were analyzed with DrudeLorentz oscillator model. Carriers’ characters were measured based on Hall effect and the magnitude and frequency dispersion of negative permittivity were mainly determined by carrier concentration.Temperature-dependent dielectric properties further proved the epsilon-negative behaviors were closely associated with free carriers’ collective responses. It’s found that negative permittivity of ITO ceramics was mainly caused by plasma oscillations of free carriers, while the dielectric loss was mainly attributed to conduction loss. Negative permittivity realized here was related to materials intrinsic nature and this work preliminarily determined the mechanism of negative permittivity in doped ceramics from the perspective of carriers.
基金supported by the National Key Basic Research Special Foundation of China (Grant No 2006CB921701)the National Natural Science Foundation of China (Grant Nos 10474072,10634050 and 50477048) the Shanghai Science and Technology Committee of China (Grant No 07DZ22302)
文摘We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε 〈 0 and μ 〉 0, or μ-negative materials (MNMs) with ε 〉 0 and μ 〈 0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.
基金Project(2013JSJJ002)supported by the Faculty Research Fund of Central South University,China
文摘Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 10~2 Hz and was 26 times that of the pure PI.
基金supported by the National Natural Science Foundation of China (Grant No 60701016)the Science Foundation for Young Faculties of UESTC (Grant Nos L08010301JX0618 and L08010301JX05013)
文摘This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measurements show that nanocrystalline magnetic phase (α-Fe) has been formed in the amorphous matrix when it was annealed at 600℃. Hard magnetic phase (Fe2B) was formed in the microwires annealed at 750℃, which increases the magnetic coercivity. Microwave permittivity and permeability are found to be dependent on the microstruetures. The permittivity fitting results show that multi Lorentzian dispersion processes exist. For microwires annealed at 750℃, their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600℃. The microwave absorption performance of microwires annealed at 600℃ is found better than microwires annealed at 750℃.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.51677033,51802061,51702069].
文摘Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05wasobtained in x=0.05 Sr1-1.5xBixTiO3 ceramics.In addition,the dielectric constant is maintained at a value greater than 104 in the range of 102-105 Hz and almost frequency independent.Phase structure analysis and density functional theory calculations suggest that the Bi·Sr-V"Sr-Bi·Sr defect complex with hole-pinned defect-dipoles maybe responsible for the high-performance CP properties.This work gives a new way to achieve high performance CP materials in ABO3 perovskite ceramics.
基金Supported by the National Natural Science Foundation of China under Grant No 61275174the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20100162110068
文摘A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gallium arsenide (GaAs) plane in the top layer. The simulated results show that a perfect absorption in the region from 481.2 to 684.0THz can be obtained for either transverse electric or magnetic polarization wave due to the coupling effect between the material of GaAs and gold. The metamaterial is ultra-thin, having the total thickness of 56nm, which is less than one-tenth resonance wavelength, and the absorption coefficients at the three resonance wavelengths are above 90%. Moreover, the effective medium theory, electric field and surface current distributions are adopted to explain the physical mechanism of the absorption, and the permittivity sensing applications are also discussed. As a result, the proposed structure can be used in many areas, such as solar cell, sensors, and integrated photodetectors.
基金supported by the National Natural Science Foundation of China(Nos.51771104,51871146,51971119)the Natural Science Foundation of Shandong Province(No.ZR2020YQ32)the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-10-E00053)。
文摘The development of negative permittivity materials in multifunctional applications requests expansion of their operating frequency and improvement of stability of negative permittivity.Low electron density is beneficial to reduce plasma frequency so that negative permittivity is achieved in kHz region.Negative permittivity achieved by percolating composites is restricted in practicality due to its instability nature at high temperatures.To achieve temperature-stable negative permittivity in kHz region,monophase La_(1-x)Ba_(x)CoO_(3)ceramics were prepared,and the transition from dielectric to metal was elaborated in the perspective of electrical conductivity and negative permittivity.The plasma-like negative permittivity is attained in kHz region,which is interpreted by the collective oscillation of low electron density.The temperature-stable negative permittivity is based on the fact that the plasmonic state will not be undermined at high temperatures.In addition,zero-crossing behavior of real permittivity is observed in La_(0.9)Ba_(0.1)CoO_(3)sample,which provides a promising alternative to designing epsilon-near-zero materials.This work makes the La_(1-x)Ba_(x)CoO_(3)system a source material for achieving effective negative permittivity.
基金financially supported by the Fundamental Research Foundation for University of Heilongjiang Province(No.2018-KYYWF-1628)the National Natural Science Foundation of China(Nos.51471057 and 51677033)。
文摘Donor-acceptor co-doped rutile TiO_(2) ceramics with colossal permittivity(CP)have been extensively investigated in recent years due to their potential applications in modern microelectronics.In addition to CP and low dielectric loss,voltage stability is an essential property for CP materials utilized in high-power and high-energy density storage devices.Unfortunately,the voltage stability of CP materials based on codoped TiO_(2) does not catch enough attention.Here,we propose a strategy to enhance the voltage stability of co-doped TiO_(2),where different ionic defect clusters are formed by two acceptor ions with different radii to localize free carriers and result in high performance CP materials.The(Ta+Al+La)co-doped TiO_(2) ceramic with suitable La/Al ratio exhibits colossal permittivity with excellent temperature stability as well as outstanding dc bias stability.The density functional theory analysis suggests that La^(3+)Al^(3+)V_(0)Ti^(3+)defect clusters and Ta^(5+)-Al^(3+)pairs are responsible for the excellent dielectric properties in(Ta+Al+La)co-doped TiO_(2).The results and mechanisms presented in this work open up a feasible route to design high performance CP materials via defect engineering.
基金sponsored by the National Natural Science Foundation of China (Grant No.51803119,51871146 and 51771108)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2019-01-07-00-10-E00053)+1 种基金"Chenguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Grant No.18CG56)the Science and Technology Commission of Shanghai Municipality (Grant No.18DZ1112902,No.18DZ1100802)
文摘Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.
基金financially supported by the National Natural Science Foundation of China (Nos.52101176,11604060,22005071 and 52101010)the China Postdoctoral Science Foundation (No.2020M671992)+3 种基金Guangdong Basic and Applied Basic Research Foundation (No.2021A1515110883)Guizhou Provincial Science and Technology Projects (No.ZK[2022]General044)the Cultivation Programs Research Foundation of Guizhou University (No.2019-64)support of the Fund of Natural Science Special (Special Post)Research Foundation of Guizhou University[Grant No.2023-032]。
文摘Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.