期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils 被引量:7
1
作者 HU Hong-Qing LIU Hua-Liang +1 位作者 HE Ji-Zheng HUANG Qiao-Yun 《Pedosphere》 SCIE CAS CSCD 2007年第1期117-123,共7页
Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latoso... Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L^-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-clnnamon soil and generally the yellow-brown soil (permanent-charge soils) decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the varlable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol. 展开更多
关键词 cadmium sorption organic acids variable- and permanent-charge soils
在线阅读 下载PDF
Interaction Between Charge Characteristics and Cu^(2+) Adsorption-Desorption of Soils with Variable or Permanent Charge 被引量:12
2
作者 LI XUEYUAN, LING WANTING and HE JIZHENGKey Laboratory of Subtropical Soil Resources and Environment, Chinese Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第4期321-328,共8页
Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and permanent charge (brown soil) and the relationship between them were studied by means of back-titration and adsorption ... Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and permanent charge (brown soil) and the relationship between them were studied by means of back-titration and adsorption equilibrium respectively. The amount of variable negative charge was much less in variable-charge soil than in permanent-charge soil and increased with the pH in the system, but the opposite trend occurred in the points of zero charge (PZCs). The amount of Cu2+ ions sorbed by permanent-charge soil was more than that by variable-charge soil and increased with the increase of Cu2+ concentration within a certain range in the equilibrium solution. The amount of Cu2+ ions desorbed with KC1 from permanent-charge soil was more than that from variable-charge soil, but the amount of Cu2+ ions desorbed with de-ionized water from permanent-charge soil was extremely low whereas there was still a certain amount of desorption from variable-charge soil. The increase of PZC of soils with variable or permanent charge varied with the increment of Cu2+ ions added. When the same amount of Cu2+ ions was added, the increments of PZC and variable negative surface charge of permanent-charge soil were different from those of variable-charge soil. 展开更多
关键词 ADSORPTION-DESORPTION Cu2+ ion permanent-charge soil variable-charge soil variable negat surface charge
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部