The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostr...The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin II is one of the neurotransmitters involved in the processing of the known that one of the mechanisms by which angiotensin II exerts cardiovascular reflexes within the brainstem. It is well- its effect is via the activation of pathways that generate reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological dis- eases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings documenting a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.展开更多
文摘The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin II is one of the neurotransmitters involved in the processing of the known that one of the mechanisms by which angiotensin II exerts cardiovascular reflexes within the brainstem. It is well- its effect is via the activation of pathways that generate reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological dis- eases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings documenting a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.