The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced eff...Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).展开更多
Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is requi...Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration.展开更多
Sweet potato is one of the most important crops in Côte d’Ivoire. However, some constraints related to climate change limit its production. This study evaluated the agronomic and technological performances of ei...Sweet potato is one of the most important crops in Côte d’Ivoire. However, some constraints related to climate change limit its production. This study evaluated the agronomic and technological performances of eight varieties of orange-fleshed of sweet potato (Ipomoea batatas (L.) to identify the most promising ones. The results show three groups of varieties with different agronomic performances. Group 1 composed of Irene and Vita is characterized by low production of small and large tuberous roots, low number of productive plants and low yield. Group 2 consisting mainly of Kabode is characterized by high production and weight of large tuberous roots as well as high yield. Group 3, composed of Tacha-2 Ininda, Ejumula Gloria, TIB-440060, CIP-199062-1, Bela bela is characterized by high production of small and large tuberous roots, high number of productive plants and average yield. The TIB-440060 variety has a recovery rate of 100%. The Irene, Kabode, Vita, Kabode varieties were resistant to viral and fungal diseases. In terms of technological quality, the TIB-440060 and CIP-199062-1 varieties have the best organoleptic qualities. Given the agronomic performances of the Kabode, TIB-440060 and CIP-199062-1 varieties, could be selected as the elites varieties and distributed to producers.展开更多
This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution conc...This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution concentrations of 3%,6%,9%,and 12%,the optimal dispersion effect was achieved with an ultrasonic dispersion time of 20 minutes.Specifically,at a 6%nano-TiO_(2)content,both the workability and mechanical performance of the cement paste were enhanced.Furthermore,while nano-TiO_(2)did not alter the types of hydration products present in the cement paste,it did increase the amount of C-S-H gels.This enhancement was attributed to a higher number of nucleation sites for hydration products,which promoted hydration and reduced the porosity of the cement paste.展开更多
The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strateg...The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strategy,the industry predominantly employs a semi-activated control strategy in existing tidal current energy converters.It is essential to identify the differences in predicted energy-harvesting performance between these two controlling strategies through experimental modeling or numerical studies.Furthermore,the suitability of the fully activated control strategy in predicting the energy-harvesting capabilities of oscillating hydrofoils is evaluated.The 2D numerical models of hydrofoil based on fully activated and semi-activated control strategies have been developed and validated.The amplitudes of heaving and pitching movements for the fully activated hydrofoil are determined to match those of the semi-activated hydrofoil.The results show that the main difference between the two control strategies lies in the phase shift occurring between the pitching and heaving motions.This phase shift affects the lift force and its coordination with the heaving velocity,which in turn affects the power output.Notably,the maximum relative efficiency difference obtained between the fully activated and semi-activated control strategies can reach 191%.展开更多
Coating techniques are efficient routes to modify surface property of composite membranes for enhanced membrane separations.However,it remains challenge to deposit continuous inorganic layers on hollow fiber substrate...Coating techniques are efficient routes to modify surface property of composite membranes for enhanced membrane separations.However,it remains challenge to deposit continuous inorganic layers on hollow fiber substrates.This study combines surface segregation with physical vapor deposition(PVD)to construct intensified TiO_(2)layers on polyether sulfone(PES)hollow fiber substrates.During membrane fabrication,polyethylene-polypropylene glycol(F127)is used as surface segregation agent in casting solution,which enables PES hollow fibers with abundant hydroxy groups,thus improving the compatibility between PES and vaporized TiO_(2).The obtained PES/F127@TiO_(2)membranes exhibit tight TiO_(2)layers with tunable thickness,high mechanical strength,narrowed pore size and enhanced hydrophilicity.Moreover,the optimized PES/F127@TiO_(2)membranes show competitive antifouling performances in water treatment,with a water permeability up to 97 L·m^(-2)·h^(-1)·bar^(-1)and bovine serum albumin(BSA)rejection of~99%.This work is expected to provide a material design idea to deposit functional layers on polymers for fortified performances.展开更多
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex...The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder...InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.展开更多
Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying obs...Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.展开更多
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc...In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.展开更多
FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron ...FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.展开更多
The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifyi...The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifying the structure and improving the properties of materials.However,there are currently few reports about the effect of rare earth addition on the microstructure and performances of Al alloys prepared via selective laser melting.Here,AlSi10Mg alloys were manufactured using selective laser melting,and the effect of Er addition was investigated.The results indicate that Er addition leads toα-Al refinement and modifies the minority Si phase.The formation of the Al_(3)Er phase induced by Er addition enhances the stren gth of the material.Modification of the Si phase also increases ductility.This strategy can help improve the mechanical performance of alum inum alloys prepared via selective laser melting.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area an...In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts.展开更多
Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs ar...Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.展开更多
Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder...Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.展开更多
Aromatic liquor breweries produce massive distiller grains containing a high percentage of rice husks that necessitate harmless treatment and resource utilization.These husk-rich distiller grains can be pyrolyzed in t...Aromatic liquor breweries produce massive distiller grains containing a high percentage of rice husks that necessitate harmless treatment and resource utilization.These husk-rich distiller grains can be pyrolyzed in the Ni-based catalyst system at a relatively low temperature(480?C)into combustible gas,which is used in liquor distillation,and biochar(BDG)with high mineral nutrients and good surface properties.A 3-year field experiment(2018-2020)was established to understand the effects of BDG on sorghum agronomic performances and greenhouse gas emissions from the soil.The results showed that BDG had higher mineral nutrient(N,P,K,and S)contents,larger cation exchange capacity,and better surface structure than those prepared using the traditional method at 400 and 600℃.Compared with sole chemical fertilizer(CF),the combination of CF and BDG(CF+BDG)increased sorghum nutrient(N,P,and K)uptake,yield,fertilizer use efficiency,and economic benefit.Cumulative CO_(2) emission from the soil changed little between with and without BDG,indicating the microbial stability of BDG.The effective adsorption of NH_(3) or NH_(4)+by BDG upon N application may reduce N loss through NH_(3) and N_(2)O emissions and increase the efficiency of fertilizer N use.Cumulative CH_(4) emission ranged from 32.45 to 44.86 g ha-1,which could be overlooked as a greenhouse gas in the sorghum field.Moreover,CF+BDG significantly decreased NH3 and N_(2)O emissions for the production of each unit of sorghum grains and the CO_(2) emission from the land for the production of a certain amount of sorghum grains.Therefore,CF+BDG exhibited better agronomic and environmental performances in sorghum cultivation.展开更多
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
文摘Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).
基金support for this research from the Fundamental Research Funds for the National Natural Science Foundation of China (Grant Nos. 51978588, 52078434, and 52368065)the China Scholarship Council (Grant No. 202107000077)UKRI Engineering and Physical Science ResearchCouncil (EPSRC) for the financial sponsorship of Re4Rail project (Grant No. EP/Y015401/1)
文摘Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration.
文摘Sweet potato is one of the most important crops in Côte d’Ivoire. However, some constraints related to climate change limit its production. This study evaluated the agronomic and technological performances of eight varieties of orange-fleshed of sweet potato (Ipomoea batatas (L.) to identify the most promising ones. The results show three groups of varieties with different agronomic performances. Group 1 composed of Irene and Vita is characterized by low production of small and large tuberous roots, low number of productive plants and low yield. Group 2 consisting mainly of Kabode is characterized by high production and weight of large tuberous roots as well as high yield. Group 3, composed of Tacha-2 Ininda, Ejumula Gloria, TIB-440060, CIP-199062-1, Bela bela is characterized by high production of small and large tuberous roots, high number of productive plants and average yield. The TIB-440060 variety has a recovery rate of 100%. The Irene, Kabode, Vita, Kabode varieties were resistant to viral and fungal diseases. In terms of technological quality, the TIB-440060 and CIP-199062-1 varieties have the best organoleptic qualities. Given the agronomic performances of the Kabode, TIB-440060 and CIP-199062-1 varieties, could be selected as the elites varieties and distributed to producers.
基金Funded by National Natural Science Foundation of China(No.52108188)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2024-15)+3 种基金State Key Laboratory of Mountain Bridge and Tunnel Engineering,Chongqing Jiaotong University(No.SKLBT-2301)Opening Project of State Key Laboratory of Green Building Materials(No.2022GBM10)Open Research Fund of Key Laboratory of Engineering Materials of Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(No.EMF202407)General Project of Science and Technology Plan of Beijing Municipal Commission of Education(No.KM202110005018)。
文摘This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution concentrations of 3%,6%,9%,and 12%,the optimal dispersion effect was achieved with an ultrasonic dispersion time of 20 minutes.Specifically,at a 6%nano-TiO_(2)content,both the workability and mechanical performance of the cement paste were enhanced.Furthermore,while nano-TiO_(2)did not alter the types of hydration products present in the cement paste,it did increase the amount of C-S-H gels.This enhancement was attributed to a higher number of nucleation sites for hydration products,which promoted hydration and reduced the porosity of the cement paste.
基金supported by the Shandong Natural Science Foundation Youth Project(No.ZR2023QE075)the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center(No.MAETIC202210)the Shandong Natural Science Foundation Project(No.ZR2022ME145)。
文摘The oscillating hydrofoil represents a promising technology for harvesting energy from tidal currents.While previous research has primarily focused on oscillating hydrofoils utilizing a fully activated control strategy,the industry predominantly employs a semi-activated control strategy in existing tidal current energy converters.It is essential to identify the differences in predicted energy-harvesting performance between these two controlling strategies through experimental modeling or numerical studies.Furthermore,the suitability of the fully activated control strategy in predicting the energy-harvesting capabilities of oscillating hydrofoils is evaluated.The 2D numerical models of hydrofoil based on fully activated and semi-activated control strategies have been developed and validated.The amplitudes of heaving and pitching movements for the fully activated hydrofoil are determined to match those of the semi-activated hydrofoil.The results show that the main difference between the two control strategies lies in the phase shift occurring between the pitching and heaving motions.This phase shift affects the lift force and its coordination with the heaving velocity,which in turn affects the power output.Notably,the maximum relative efficiency difference obtained between the fully activated and semi-activated control strategies can reach 191%.
基金supported by the National Natural Science Foundation of China(Nos.22408072 and 22208074)Hainan Province Science and Technology Special Fund(No.ZDYF2024GXJS300)Hainan Provincial Natural Science Foundation of China(No.222QN225)。
文摘Coating techniques are efficient routes to modify surface property of composite membranes for enhanced membrane separations.However,it remains challenge to deposit continuous inorganic layers on hollow fiber substrates.This study combines surface segregation with physical vapor deposition(PVD)to construct intensified TiO_(2)layers on polyether sulfone(PES)hollow fiber substrates.During membrane fabrication,polyethylene-polypropylene glycol(F127)is used as surface segregation agent in casting solution,which enables PES hollow fibers with abundant hydroxy groups,thus improving the compatibility between PES and vaporized TiO_(2).The obtained PES/F127@TiO_(2)membranes exhibit tight TiO_(2)layers with tunable thickness,high mechanical strength,narrowed pore size and enhanced hydrophilicity.Moreover,the optimized PES/F127@TiO_(2)membranes show competitive antifouling performances in water treatment,with a water permeability up to 97 L·m^(-2)·h^(-1)·bar^(-1)and bovine serum albumin(BSA)rejection of~99%.This work is expected to provide a material design idea to deposit functional layers on polymers for fortified performances.
基金funded by the Project of the Hubei Provincial Department of Science and Technology(Grant No.2022CFB957)the Project of Hubei Engineering University of Teaching Research(Grant No.JY2024032)+1 种基金Ministry of Education University-Industry Cooperation Collaborative Education Project(Grant No.220903584161245)College Students’Innovation and Entrepreneurship Training Program(Grant Nos.DC2024031,DC2024032).
文摘The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
基金the support of the National Natural Science Foundation of China (Grant No.62204030)supported in part by the National Natural Science Foundation of China (Grant Nos.62122036,62034004,61921005,61974176,and 12074176)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)。
文摘InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications.
基金National Natural Science Foundation of China(Grant Nos.61803348,62173312,51922009)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(Grant No.201905D121001).
文摘Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.
基金supported by the Defense Industrial Technology Development Program(Grant No.JCKY2018604B004)the National Natural Science Foundation of China(Grant No.11972007)。
文摘In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.
基金supported by the National Key Research and Development Program(No.2021YFB2400300)the National Natural Science Foundation of China(No.52177214)supported by China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund(No.21C-OP202211)。
文摘FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.
基金Project supported by the National Natural Science Foundation of China(51974092,U21A2043)Guangdong Basic and Applied Basic Research Foundation(2020A1515110136,2020B1515120065,2022B1515120066)Dongguan Science and Technology Special Agent Project(20221800500212)。
文摘The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifying the structure and improving the properties of materials.However,there are currently few reports about the effect of rare earth addition on the microstructure and performances of Al alloys prepared via selective laser melting.Here,AlSi10Mg alloys were manufactured using selective laser melting,and the effect of Er addition was investigated.The results indicate that Er addition leads toα-Al refinement and modifies the minority Si phase.The formation of the Al_(3)Er phase induced by Er addition enhances the stren gth of the material.Modification of the Si phase also increases ductility.This strategy can help improve the mechanical performance of alum inum alloys prepared via selective laser melting.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
基金supported by the National Natural Science Foundation of China-Liaoning Joint Fund Key Project(Grant No.U1908222)the National Natural Science Foundation of China Youth Science Fund(Grant No.52104087).
文摘In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts.
文摘Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.
基金supported by the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294).
文摘Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.
基金the financial support by the National Key Research and Development Program of China(No.2018YFC1901100)。
文摘Aromatic liquor breweries produce massive distiller grains containing a high percentage of rice husks that necessitate harmless treatment and resource utilization.These husk-rich distiller grains can be pyrolyzed in the Ni-based catalyst system at a relatively low temperature(480?C)into combustible gas,which is used in liquor distillation,and biochar(BDG)with high mineral nutrients and good surface properties.A 3-year field experiment(2018-2020)was established to understand the effects of BDG on sorghum agronomic performances and greenhouse gas emissions from the soil.The results showed that BDG had higher mineral nutrient(N,P,K,and S)contents,larger cation exchange capacity,and better surface structure than those prepared using the traditional method at 400 and 600℃.Compared with sole chemical fertilizer(CF),the combination of CF and BDG(CF+BDG)increased sorghum nutrient(N,P,and K)uptake,yield,fertilizer use efficiency,and economic benefit.Cumulative CO_(2) emission from the soil changed little between with and without BDG,indicating the microbial stability of BDG.The effective adsorption of NH_(3) or NH_(4)+by BDG upon N application may reduce N loss through NH_(3) and N_(2)O emissions and increase the efficiency of fertilizer N use.Cumulative CH_(4) emission ranged from 32.45 to 44.86 g ha-1,which could be overlooked as a greenhouse gas in the sorghum field.Moreover,CF+BDG significantly decreased NH3 and N_(2)O emissions for the production of each unit of sorghum grains and the CO_(2) emission from the land for the production of a certain amount of sorghum grains.Therefore,CF+BDG exhibited better agronomic and environmental performances in sorghum cultivation.