Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show m...Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162)Science and Technology Commission of Shanghai Municipality, China (Nos. 11nm0501000, 12ZR1451100)+1 种基金Key Subject of Shanghai Municipal Education Commission (No. J50102)Fundamental Research Funds for the Central Universities (No. 2011KJ023)
文摘Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.