With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan...In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.展开更多
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e...The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.展开更多
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures...This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.展开更多
To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ...To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.展开更多
The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achiev...The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
Viscoelastic dampers(VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake.Various...Viscoelastic dampers(VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake.Various methods to design this kind of dampers have been proposed based on the desired level of additional damping,eigenvalue assignment,modal strain energy,linear quadratic regulator control theories,and other approaches.In the current engineering practice,the popular method is the one based on the modal strain energy that uses the inter-story lateral stiffness as one of the main variables for damper design.However,depending on the configuration of the structure,in some cases the resulting interstory lateral stiffness can be very large.Consequently,the dampers size would also be large producing much more damping than that effectively necessary,resulting in an increase of the overall cost of the supplemental damping system and causing excessive stress on the structural elements connected to the dampers.In this paper an alternative practical design method for structures with VEDs is proposed.This method uses the inter-story shear forces as one of the main variables to accomplish the damper design compared to what was done in previous studies.Nonlinear time-history analyses were conducted on a 7-story reinforced concrete(RC) structure to check the reliability and effectiveness of the proposed method.Comparisons on the seismic performance between the structure without dampers and that equipped with VEDs were carried out.It is concluded that the proposed method results in a very suitable size of dampers,which are able to improve the performance of the structure at all levels of earthquake ground motions and satisfying the drift requirement prescribed in the codes.展开更多
Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional id...Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.展开更多
Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Appl...Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Applying the ATC 58 approach for seismic loss assessment of buildings requires using Incremental Dynamic Analysis (IDA), which needs hundreds of time-consuming analyses, which in turn hinders its wide application. The Endurance Time Method (ETM) is proposed herein as part of a demand propagation prediction procedure and is shown to be an economical alternative to IDA. Various scenarios were considered to achieve this purpose and their appropriateness has been evaluated using statistical methods. The most precise and efficient scenario was validated through comparison against IDA driven response predictions of 34 code conforming benchmark structures and was proven to be sufficiently precise while offering a great deal of efficiency. The loss values were estimated by replacing IDA with the proposed ETM-based procedure in the ATC 58 procedure and it was fotmd that these values suffer from varying inaccuracies, which were attributed to the discretized nature of damage and loss prediction functions provided by ATC 58.展开更多
In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently dev...In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently developed pseudostatic methods provide earth stresses and internal forces,even in those cases in which the strength of the soil surrounding the structure is not entirely mobilised.Semiempirical correlations or Newmark sliding block method provide an estimate of earthquake-induced permanent displacements.However,the use of these methods is hindered by uncertainties in the evaluation of a few input parameters,affecting the reliability of the methods.This study uses 1 D site response analyses and 2 D fully-dynamic finite element analyses to show that simplified methods can provide a reasonable estimate of the maximum bending moment and permanent displacements for stiff cantilever walls embedded in uniform sand,providing that a few input parameters are evaluated through semiempirical correlations and a simple 1 D site response analysis.展开更多
China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconne...China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconnected through bridges,but constructing highway bridges through complex terrains or across valleys and mountain gullies presents significant challenges,requiring an increase in the height of bridge piers.These bridge piers generally reach tens or even hundreds of meters in height.Furthermore,the construction of these high-pier bridges is becoming increasingly widespread.Not only do they pose greater construction challenges,but they also have higher requirements for seismic resistance.This article primarily analyzes the characteristics of high-pier bridges and proposes seismic design schemes,calculation methods,and design strategies to enhance the construction quality of high-pier bridges.展开更多
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an...In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.展开更多
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design metho...This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.展开更多
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research an...As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.展开更多
This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degr...This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames, while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
The Iberian Peninsula is close to the Eurasia-Africa plate boundary resulting in a considerable seismic hazard.In fact,the southwestern Iberian Peninsula is affected by far away earthquakes of long-return period with ...The Iberian Peninsula is close to the Eurasia-Africa plate boundary resulting in a considerable seismic hazard.In fact,the southwestern Iberian Peninsula is affected by far away earthquakes of long-return period with large-very large magnitude.A project named PERSISTAH(Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva,in Portuguese)aims to cooperatively assess the seismic vulnerability of primary schools located in the Algarve(Portugal)and Huelva(Spain).Primary schools have been selected due to the considerable amount of similar buildings and their seismic vulnerability.In Portugal,the Decreto Lei 235/83(RSAEEP)is mandatory while in Spain,the mandatory code is the Seismic Building Code(NCSE-02).In both countries,the Eurocode-8(EC-8)is recommended.Despite the fact that both regions would be equally affected by an earthquake,both seismic codes are significantly different.This research compares the seismic action of Ayamonte(Huelva)and Vila Real de Santo António(Portugal).Both towns are very close and located at both sides of the border.Moreover,they share the same geology.This analysis has been applied considering a reinforced concrete(RC)primary school building located in Huelva.To do so,the performance-based method has been used.The seismic action and the damage levels are compared and analysed.The results have shown considerable differences in the seismic actions designation,in the performance point values and in the damage levels.The values considered in the Portuguese code are significantly more unfavourable.An agreement between codes should be made for border regions.展开更多
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
文摘In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.
基金Chinese National Natural Science Foundation with the grant No.59895410the China Basic Research and Development Project:the Mechanism and Prediction of the Strong Earthquake of the Continental under the Grant No.95130603
文摘The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.
基金China Earthquake Administration Association Fund Under Grant No. 106060 and Institute of Engineering Mechanics Director Fund
文摘This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.
基金Beijing Nova Program under Grant No.2022036National Key Research and Development Program under Grant No.2019YFC1521000。
文摘To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.
文摘The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
基金National Key Research and Development Program of China under Grant No.2016YFC0701101the National Nature Science Foundation of China under Grant No.51678449
文摘Viscoelastic dampers(VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake.Various methods to design this kind of dampers have been proposed based on the desired level of additional damping,eigenvalue assignment,modal strain energy,linear quadratic regulator control theories,and other approaches.In the current engineering practice,the popular method is the one based on the modal strain energy that uses the inter-story lateral stiffness as one of the main variables for damper design.However,depending on the configuration of the structure,in some cases the resulting interstory lateral stiffness can be very large.Consequently,the dampers size would also be large producing much more damping than that effectively necessary,resulting in an increase of the overall cost of the supplemental damping system and causing excessive stress on the structural elements connected to the dampers.In this paper an alternative practical design method for structures with VEDs is proposed.This method uses the inter-story shear forces as one of the main variables to accomplish the damper design compared to what was done in previous studies.Nonlinear time-history analyses were conducted on a 7-story reinforced concrete(RC) structure to check the reliability and effectiveness of the proposed method.Comparisons on the seismic performance between the structure without dampers and that equipped with VEDs were carried out.It is concluded that the proposed method results in a very suitable size of dampers,which are able to improve the performance of the structure at all levels of earthquake ground motions and satisfying the drift requirement prescribed in the codes.
文摘Current design criteria and prineiples of earthquake engineering design are reviewed,including safety factors, probabilistic approach,and two-level and muhi-level functional design ideas.The modern multi-functional idea is discussed in greater details.When designing a structure,its resistance to and the intensity of the earthquake action are considered. The consequence of failure of the structure is considered only through a rough and empirical factor of importance,ranging usually from 1.0 to 1.5.This paper suggests a method of'consequence-based design,'which considers the consequences of malfunctioning instead of simply an importance factor.The main argument for this method is that damage to a structure located in different types of societies may have very different consequences,which are depeudant on its value and usefulness to the society and the seismicity in the region.
文摘Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Applying the ATC 58 approach for seismic loss assessment of buildings requires using Incremental Dynamic Analysis (IDA), which needs hundreds of time-consuming analyses, which in turn hinders its wide application. The Endurance Time Method (ETM) is proposed herein as part of a demand propagation prediction procedure and is shown to be an economical alternative to IDA. Various scenarios were considered to achieve this purpose and their appropriateness has been evaluated using statistical methods. The most precise and efficient scenario was validated through comparison against IDA driven response predictions of 34 code conforming benchmark structures and was proven to be sufficiently precise while offering a great deal of efficiency. The loss values were estimated by replacing IDA with the proposed ETM-based procedure in the ATC 58 procedure and it was fotmd that these values suffer from varying inaccuracies, which were attributed to the discretized nature of damage and loss prediction functions provided by ATC 58.
文摘In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently developed pseudostatic methods provide earth stresses and internal forces,even in those cases in which the strength of the soil surrounding the structure is not entirely mobilised.Semiempirical correlations or Newmark sliding block method provide an estimate of earthquake-induced permanent displacements.However,the use of these methods is hindered by uncertainties in the evaluation of a few input parameters,affecting the reliability of the methods.This study uses 1 D site response analyses and 2 D fully-dynamic finite element analyses to show that simplified methods can provide a reasonable estimate of the maximum bending moment and permanent displacements for stiff cantilever walls embedded in uniform sand,providing that a few input parameters are evaluated through semiempirical correlations and a simple 1 D site response analysis.
文摘China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconnected through bridges,but constructing highway bridges through complex terrains or across valleys and mountain gullies presents significant challenges,requiring an increase in the height of bridge piers.These bridge piers generally reach tens or even hundreds of meters in height.Furthermore,the construction of these high-pier bridges is becoming increasingly widespread.Not only do they pose greater construction challenges,but they also have higher requirements for seismic resistance.This article primarily analyzes the characteristics of high-pier bridges and proposes seismic design schemes,calculation methods,and design strategies to enhance the construction quality of high-pier bridges.
基金Project(2011ZA05) supported by the State Key Laboratory’s Autonomous Project of Subtropical Building Science in South China University of Technology
文摘In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.
基金International Science&Technology Cooperation Program of China under Grant No.2014DFA70950Tsinghua University Initiative Scientific Research Program under Grant No.2012THZ02-1National Natural Science Foundation of China under Grant No.91315301
文摘This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
基金National Natural Science Foundation Project under Grant No.91315301-4National Key Technology R&D Program under Grant No.2012BAJ13B02
文摘As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.
文摘This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames, while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.
基金This work has been supported by the INTERREG-POCTEP Spain-Portugal programme and the European Regional Development Fund through the 0313_PERSISTAH_5_P project and the VI-PPI of the University of Seville by the granting of a scholarship.The grant provided by the Instituto Universitario de Arquitectura and Ciencias de la Construcción is acknowledged.
文摘The Iberian Peninsula is close to the Eurasia-Africa plate boundary resulting in a considerable seismic hazard.In fact,the southwestern Iberian Peninsula is affected by far away earthquakes of long-return period with large-very large magnitude.A project named PERSISTAH(Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva,in Portuguese)aims to cooperatively assess the seismic vulnerability of primary schools located in the Algarve(Portugal)and Huelva(Spain).Primary schools have been selected due to the considerable amount of similar buildings and their seismic vulnerability.In Portugal,the Decreto Lei 235/83(RSAEEP)is mandatory while in Spain,the mandatory code is the Seismic Building Code(NCSE-02).In both countries,the Eurocode-8(EC-8)is recommended.Despite the fact that both regions would be equally affected by an earthquake,both seismic codes are significantly different.This research compares the seismic action of Ayamonte(Huelva)and Vila Real de Santo António(Portugal).Both towns are very close and located at both sides of the border.Moreover,they share the same geology.This analysis has been applied considering a reinforced concrete(RC)primary school building located in Huelva.To do so,the performance-based method has been used.The seismic action and the damage levels are compared and analysed.The results have shown considerable differences in the seismic actions designation,in the performance point values and in the damage levels.The values considered in the Portuguese code are significantly more unfavourable.An agreement between codes should be made for border regions.