期刊文献+
共找到684,415篇文章
< 1 2 250 >
每页显示 20 50 100
Architecture-level performance/power tradeoff in network processor design
1
作者 陈红松 季振洲 胡铭曾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期45-48,共4页
Network processors are used in the core node of network to flexibly process packet streams. With the increase of performance, the power of network processor increases fast, and power and cooling become a bottleneck. A... Network processors are used in the core node of network to flexibly process packet streams. With the increase of performance, the power of network processor increases fast, and power and cooling become a bottleneck. Architecture-level power conscious design must go beyond low-level circuit design. Architectural power and performance tradeoff should be considered at the same time. Simulation is an efficient method to design modem network processor before making chip. In order to achieve the tradeoff between performance and power, the processor simulator is used to design the architecture of network processor. Using Netbeneh, Commubench benchmark and processor simulator-SimpleScalar, the performance and power of network processor are quantitatively evaluated. New performance tradeoff evaluation metric is proposed to analyze the architecture of network processor. Based on the high performance lnteI IXP 2800 Network processor eonfignration, optimized instruction fetch width and speed ,instruction issue width, instruction window size are analyzed and selected. Simulation resuits show that the tradeoff design method makes the usage of network processor more effectively. The optimal key parameters of network processor are important in architecture-level design. It is meaningful for the next generation network processor design. 展开更多
关键词 network processor design performance/power simulation tradeoff evaluation optimization
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
2
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
From microstructure to performance optimization:Innovative applications of computer vision in materials science
3
作者 Chunyu Guo Xiangyu Tang +10 位作者 Yu’e Chen Changyou Gao Qinglin Shan Heyi Wei Xusheng Liu Chuncheng Lu Meixia Fu Enhui Wang Xinhong Liu Xinmei Hou Yanglong Hou 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期94-115,共22页
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear... The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects. 展开更多
关键词 MICROSTRUCTURE deep learning computer vision performance prediction image generation
在线阅读 下载PDF
Performance analysis of scramjet including magnetohydrodynamic power generation after combustor
4
作者 LIU Chenyuan WU Shaoxun MENG Hao 《推进技术》 北大核心 2025年第8期15-28,共14页
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b... To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%. 展开更多
关键词 SCRAMJET Energy bypass Magnetohydrodynamic power generation Chemical balance performance evaluation
原文传递
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
5
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
Artificial Intelligence Empowers Solid‑State Batteries for Material Screening and Performance Evaluation 被引量:1
6
作者 Sheng Wang Jincheng Liu +5 位作者 Xiaopan Song Huajian Xu Yang Gu Junyu Fan Bin Sun Linwei Yu 《Nano-Micro Letters》 2025年第11期599-629,共31页
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b... Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration. 展开更多
关键词 Solid-state batteries Artificial intelligence Deep learning Material screening performance evaluation
在线阅读 下载PDF
Experimental Study on the Influence of a Partial Reflection Wall on the Power Performance of a Box-Type Wave Energy Converter
7
作者 ZHANG Qi LI Xiao-zhong +3 位作者 LIN Chu-sen JIN Peng YUAN Yu-ming ZHOU Bin-zhen 《China Ocean Engineering》 2025年第4期675-686,共12页
The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are... The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are represented by a partial reflection wall,enabling the device to harness additional reflected wave energy.However,the mechanisms by which the reflection coefficient and the clearance between the wall and the device affect energy conversion performance remain inadequately understood.This study experimentally investigates these effects.The findings demonstrate that the clearance impact on HBWEC power performance near partial reflection walls aligns with standing wave variation characteristics,with optimal positioning near the second antinode of the HBWEC's heaving natural period.Enhanced reflection coefficients improve energy conversion efficiency within the wave spectrum around the device's heaving natural period.Additionally,significant water sloshing observed within the clearance may diminish power performance,as verified through computational fluid dynamics(CFD)analysis.This phenomenon results from the multiplicative relationship of leeside clearance with 0.5λ(λis the wavelength).These insights suggest that practical engineering implementation requires balanced consideration of reflection coefficient,clearance,sloshing phenomenon,and heaving restriction system,rather than individual parameter optimization. 展开更多
关键词 heaving body wave energy converter partial reflection wall power performance heaving restriction system sloshing phenomenon
在线阅读 下载PDF
Data-driven measurement performance evaluation of voltage transformers in electric railway traction power supply systems
8
作者 Zhaoyang Li Muqi Sun +5 位作者 Jun Zhu Haoyu Luo Qi Wang Haitao Hu Zhengyou He Ke Wang 《Railway Engineering Science》 2025年第2期311-323,共13页
Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-s... Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-step,RMS data only method for evaluating VTs in TPSSs.First,a kernel principal component analysis approach is used to diagnose the VT exhibiting significant measurement deviations over time,mitigating the influence of stochastic fluctuations in traction loads.Second,a back propagation neural network is employed to continuously estimate the measurement deviations of the targeted VT.Third,a trend analysis method is developed to assess the evolution of the measurement performance of VTs.Case studies conducted on field data from an operational TPSS demonstrate the effectiveness of the proposed method in detecting VTs with measurement deviations exceeding 1%relative to their original accuracy levels.Additionally,the method accurately tracks deviation trends,enabling the identification of potential early-stage faults in VTs and helping prevent significant economic losses in TPSS operations. 展开更多
关键词 Voltage transformer Traction power supply system Measurement performance Data-driven evaluation Abrupt change detection Bootstrap confidence interval
在线阅读 下载PDF
Ocular biometric parameters associated with the performance of actual near-add power in multifocal intraocular lenses
9
作者 Ying-Feng Hu Yan Wang +2 位作者 Rong Zhang Zheng Wang Xiang-Yu Ye 《International Journal of Ophthalmology(English edition)》 2025年第11期2065-2072,共8页
AIM:To evaluate the influence of ocular biometric parameters on the performance of actual near-add power in the spectacle plane of multifocal intraocular lenses(MIOLs).METHODS:This retrospective study defined predicti... AIM:To evaluate the influence of ocular biometric parameters on the performance of actual near-add power in the spectacle plane of multifocal intraocular lenses(MIOLs).METHODS:This retrospective study defined prediction error(PE)as the difference between actual postoperative near-add power and manufacturer-predicted values.Linear regression assessed PE correlations with axial length(AL),mean keratometry(K),pupil size,anterior chamber depth(ACD),lens thickness(LT),ACD+0.5×LT,and back-calculated IOL power.Differences in PE across MIOLs types,AL,K,pupil size,ACD,LT,ACD+0.5×LT,and back-calculated IOL power groups were compared.RESULTS:Totally 250 eyes of 250 patients(116 males and 134 females,mean age 56.22±12.31y)who underwent phacoemulsification with MIOL implantation were reviewed.PE showed no significant correlation with most parameters but had a weak positive correlation with LT.The mean predicted error(MPE)in the AL≤22,26–27,and 27–28 mm groups were 0.83(0.51,1.01)D,0.78(0.51,1.07)D,and 0.72(0.57,0.94)D respectively(P<0.001).The MPE in the K between the 45–46 D groups was 0.78(0.37,1.07)D(P=0.0004).The MPE in the LT between the 4.5–5.0 mm groups and≥5 mm was 0.72(0.50,1.01)D and 0.72(0.51,1.01)D respectively(P<0.001).The MPE in the back-calculated IOL power≥25 D was 0.86(0.60,1.01)D(P<0.001).CONCLUSION:Although there is no significant linear relationship between near-add power and most ocular biometry parameters,and specific segments of AL,K,LT,and IOL power have a significant impact on the near-add power of MIOLs.These factors should be taken into account in preoperative evaluations. 展开更多
关键词 near-add power multifocal intraocular lenses spectacle plane
原文传递
High-performance Cu-Cu interconnects attained through air sintering of oleylamine-capped Cu nanoparticles for power electronics packaging
10
作者 Shi-Yu Xia Xiang-Ji Li +7 位作者 Ying-Jie Guo Jun-Jie Yuan Zhe-Fei Sun Hui-Jun Cao Shu-Ye Zhang Wen-Zhi Cai Jin-Tang Li Zhi-Hao Zhang 《Rare Metals》 2025年第5期3281-3298,共18页
Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of h... Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments. 展开更多
关键词 Air sintering power electronics packaging Cu nanoparticles Flexible sensor
原文传递
Application and Performance Optimization of SLHS-TCN-XGBoost Model in Power Demand Forecasting
11
作者 Tianwen Zhao Guoqing Chen +1 位作者 Cong Pang Piyapatr Busababodhin 《Computer Modeling in Engineering & Sciences》 2025年第6期2883-2917,共35页
Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimens... Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability. 展开更多
关键词 power demand forecasting SLHS-TCN-XGBoost ensemble learning prediction accuracy noise robustness
在线阅读 下载PDF
Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models:Application of Solar-Powered Residential Buildings
12
作者 Ahmed Mohamed Galal Adebowale Martins Obalalu +4 位作者 Akintayo Oladimeji Akindele Umair Khan Abdulazeez Adebayo Usman Olalekan Adebayo Olayemi Najiyah Safwa Khashi’ie 《Computer Modeling in Engineering & Sciences》 2025年第3期3089-3113,共25页
The need for efficient thermal energy systems has gained significant attention due to the growing global concern about renewable energy resources,particularly in residential buildings.One of the biggest challenges in ... The need for efficient thermal energy systems has gained significant attention due to the growing global concern about renewable energy resources,particularly in residential buildings.One of the biggest challenges in this area is capturing and converting solar energy at maximum efficiency.This requires the use of strong materials and advanced fluids to enhance conversion efficiency while minimizing energy losses.Despite extensive research on thermal energy systems,there remains a limited understanding of how the combined effects of thermal radiation,irreversibility processes,and advanced heat flux models contribute to optimizing solar power performance in residential applications.Addressing these knowledge gaps is critical for advancing the design and implementation of highly efficient thermal energy systems.Owing to its usage,this study investigates the thermal energy and irreversibility processes in the context of solar power systems for residential buildings.Specifically,it explores the influence of thermal radiation and the Cattaneo–Christov heat flux model,considering the interactions over a stretching surface.The study incorporates cross fluid and Maxwell fluid effects into the governing model equations.Utilizing the Galerkin-weighted residual method,the transformed model is solved to understand the impacts on heat distribution.The findings reveal that increased thermal radiation and thermal conductivity significantly enhance heat distribution,offering valuable insights for optimizing solar power system efficiency in residential applications. 展开更多
关键词 Cattaneo-Christov heat flux solar power systems ternary hybrid nanofluid maxwell fluid
在线阅读 下载PDF
Optimizing Efficiency and Performance in a Rankine Cycle Power Plant Analysis
13
作者 Ramesh Kumar Abdullah Bin Queyam +2 位作者 Manish Kumar Singla Mohamed Louzazni Mishra Dipak Kumar 《Energy Engineering》 2025年第4期1373-1386,共14页
Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants,as it directly impacts operational costs and emissions in light of energy transition goals.This study sets it... Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants,as it directly impacts operational costs and emissions in light of energy transition goals.This study sets itself apart from existing research by applying a novel optimization technique to a basic ideal Rankine cycle,focusing on a specific power plant that has not been previously analyzed.Currently,this cycle operates at 41%efficiency and a steam quality of 76%,constrained by fixed operational parameters.The primary objectives are to increase thermal efficiency beyond 46%and raise steam quality above 85%,while adhering to operational limits:a boiler pressure not exceeding 15 MPa,condenser pressure not dropping below 10 kPa,and turbine temperature not surpassing 500℃.This study utilizes numerical simulations to model the effects of varying boiler pressure(Pb)and condenser pressure(Pc)within the ranges of 12MPa<Pb<15 MPa and 5 kPa<Pc<10 kPa.By systematically adjusting these parameters,the proposed aimto identify optimal conditions that maximize efficiency and performance within specified constraints.The findings will provide valuable insights for power plant operators seeking to optimize performance under real-world conditions,contributing to more efficient and sustainable power generation. 展开更多
关键词 Rankine cycle thermal efficiency steamquality boiler pressure condenser pressure cycle performance operational constraints efficiency improvement
在线阅读 下载PDF
Dynamic Performance Simulation of Power Shift Clutch During Shift 被引量:6
14
作者 冯能莲 郑慕侨 马彪 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期445-450,共6页
Based on the theoretical analyses, the dynamic and mathematical models of the system were developed. The models were implemented in the ambit of the Matlab/Simulink environment, and an integrated simulation model was ... Based on the theoretical analyses, the dynamic and mathematical models of the system were developed. The models were implemented in the ambit of the Matlab/Simulink environment, and an integrated simulation model was developed. The dynamic performance of the power shift clutch during engagement and disengagement was studied by using this assembly model. The sliding speed, torque transmitted through the clutch, and the rate at which energy is dissipated during the process were determined. Using this model, the calculation during simulation can be simplified. This lays a foundation for the dynamic performance research on the power train with the power shift clutch, and provides a powerful tool for developing an automatic, electronically controlled transmission. 展开更多
关键词 power shift clutch dynamic performance simulatio`
在线阅读 下载PDF
Performance analysis of aircraft low-power thermoelectric refrigeration system 被引量:2
15
作者 张兴娟 王羽白 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期372-374,共3页
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati... An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS. 展开更多
关键词 thermoelectric refrigeration entropy generation anal-ysis aircraft cooling system performance penalty
在线阅读 下载PDF
High Performance VHF Power VDMOSFETs for Low Voltage Applications
16
作者 刘英坤 梁春广 +3 位作者 邓建国 张颖秋 郎秀兰 李思渊 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第8期975-978,共4页
A high performance VHF power VDMOSFET,ap plying to the mobile communications,is developed,which can deliver an output power of 12W with the drain efficiency of 70% as well as the gain of 12dB at a low supply voltag... A high performance VHF power VDMOSFET,ap plying to the mobile communications,is developed,which can deliver an output power of 12W with the drain efficiency of 70% as well as the gain of 12dB at a low supply voltage of 12V and 175MHz.It is fabricated by using the terraced gat e structure and refractory molybdenum (Mo) gate technology. 展开更多
关键词 low voltage terraced gate structure Mo gate te chnology VHF power VDMOSFET
在线阅读 下载PDF
Temperature Dependence of Performance of 6H-SiC Unipolar Power Devices
17
作者 何进 张兴 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第10期1235-1239,共5页
The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytica... The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics. 展开更多
关键词 wide band gap semiconductor devices 6H SiC impact ionization coefficient avalanche breakdown on resistance temperature dependence of performance
在线阅读 下载PDF
Power Allocation and Performance Analysis of the Collaborative NOMA Assisted Relaying Systems in 5G 被引量:8
18
作者 Xin Liu Xianbin Wang Yanan Liu 《China Communications》 SCIE CSCD 2017年第1期50-60,共11页
Serving multiple cell-edge mobile terminals poses multifaceted challenges due to the increased transmission power and interferences, which could be overcome by relay communications. With the recent advancement of 5G t... Serving multiple cell-edge mobile terminals poses multifaceted challenges due to the increased transmission power and interferences, which could be overcome by relay communications. With the recent advancement of 5G technologies, non-orthogonal multiple access(NOMA) has been used at relay node to transmit multiple messages simultaneously to multiple cell-edge users. In this paper, a Collaborative NOMA Assisted Relaying(CNAR) system for 5G is proposed by enabling the collaboration of source-relay(S-R) and relay-destination(R-D) NOMA links. The relay node of the CNAR decodes the message for itself from S-R NOMA signal and transmits the remaining messages to the multiple cell-edge users in R-D link. A simplified-CNAR(S-CNAR) system is then developed to reduce the relay complexity. The outage probabilities for both systems are analyzed by considering outage behaviors in S-R and R-D links separately. To guarantee the data rate, the optimal power allocation among NOMA users is achieved by minimizing the outage probability. The ergodic sum capacity in high SNR regime is also approximated. Our mathematical analysis and simulation results show that CNAR system outperforms existing transmission strategies and S-CNAR reaches similar performance with much lower complexity. 展开更多
关键词 5G NOMA RELAYING performance analysis power allocation
在线阅读 下载PDF
Tracking Performance of Electric Power Steering System Based on the Mixed H_2/H_∞ Strategy 被引量:10
19
作者 ZHAO Wanzhong SHI Guobiao +1 位作者 LIN Yi NIE Hong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期584-590,共7页
The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road ... The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers. 展开更多
关键词 recirculating ball-type electrical power steering (EPS) system tracking performance mixed H2/H∞
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部