Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an...Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.展开更多
The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen a...The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.展开更多
Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nea...Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nearly a decade of advancements has yielded nearly thousands of research articles in this domain.Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment.Nonetheless,there is a gap in comprehensive summaries and performance evaluations of TENG structural designs.This paper delineates six innovative structural designs,focusing on enhancing internal device output and adapting to external environments:high space utilization,hybrid generator,mechanical gain,broadband response,multi-directional operation,and hybrid energy-harvesting systems.We summarize the prevailing trends in device structure design identified by the research community.Furthermore,we conduct a meticulous comparison of the electrical performance of these devices under motorized,simulated wave,and real marine conditions,while also assessing their sustainability in terms of device durability and mechanical robustness.In conclusion,the paper outlines future research avenues and discusses the obstacles encountered in the TENG field.This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology.展开更多
Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face...Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.展开更多
We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo ...We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
Background:In China,the policy of rotating teachers between urban and rural schools has been implemented to reduce educational disparities and ensure equitable access to quality education.These teachers face unique pr...Background:In China,the policy of rotating teachers between urban and rural schools has been implemented to reduce educational disparities and ensure equitable access to quality education.These teachers face unique professional and emotional challenges during the rotation process,making their emotional labor a critical factor influencing their job performance.This study aimed to explore the relationship between rotating teachers’emotional labor strategies and job performance.Methods:This study conducted a cross-sectional survey among 577 rotating teachers selected through stratified random sampling from primary and secondary schools in Chinese mainland.Date were collected using the Teacher Emotional Labor Scale and the Teacher Job Performance Scale.Latent profile analysis(LPA)was employed to identify distinct categories of emotional labor strategies:indifferent,moderately engaged,naturally invested,proactively adjusted,and emotionally elevated.Results:Teachers in the naturally invested and proactively adjusted types demonstrated relatively higher job performance scores,followed by those in the emotionally elevated type.In contrast,teachers in the indifferent and moderate engagement types exhibited comparatively lower scores(F=25.858,p<0.001,η^(2)=0.153).These findings indicate a practical significance,suggestion that flexible and adaptive use emotional labor strategies is strongly associated with enhanced job performance.Conclusion:This study demonstrates that rotating teachers’job performance differs significantly across distinct emotional labor profiles,with balanced and adaptive emotional regulation emerging as a key determinant of higher performance.By identifying and characterizing individual-centered emotional labor profiles,the study advances understanding of how emotional regulation contributes to teachers’professional effectiveness.These results underscore the importance of providing systematic and personalized support to help rotating teachers develop adaptive emotional regulation skills.Targeted guidance should enable teachers to appropriately express and adjust their emotions,thereby avoiding both excessive and insufficient emotional labor and promoting sustainable professional development.展开更多
We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic ...We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.展开更多
A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modifie...A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.展开更多
Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution funct...Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution function provide valuable information.In this study,a simulation-based framework to evaluate these probabilistic characteristics in water distribution systems(WDSs)during post-earthquake recovery is developed.The framework first calculates pipeline failure probabilities using seismic fragility models and then generates damage samples through quasi-Monte Carlo simulations with Sobol’s sequence for faster convergence.System performance is assessed using a hydraulic model,and recovery simulations produce time-varying performance curves,where the dynamic importance of unrepaired damage determines repair sequences.Finally,the probabilistic characteristics of seismic performance indicators,resilience index,resilience loss,and recovery time are evaluated.The framework is applied in two benchmark WDSs with different layouts to investigate the probabilistic characteristics of their seismic performance and resilience.Application results show that the cumulative distribution function reveals the variations in resilience indicators for different exceedance probabilities,and there are dramatic differences among the recovery times corresponding to the system performance recovery targets of 80%,90%,and 100%.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
Precast concrete structures have gained popularity due to their advantages.However,the seismic performance of their connection joints remains an area of ongoing research and improvement.Grouted Sleeve Connection(GSC)o...Precast concrete structures have gained popularity due to their advantages.However,the seismic performance of their connection joints remains an area of ongoing research and improvement.Grouted Sleeve Connection(GSC)offers a solution for connecting reinforcements in precast components,but their vulnerability to internal defects,such as construction errors and material variability,can significantly impact performance.This article presents a finite element analysis(FEA)to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns.Four finite elementmodels representing GSC with varying degrees of defects were used to investigate the effects on mechanical properties,including bearing capacity,stress-deformation behavior,and stiffness degradation.The study highlights the significant impact of internal grouting defects on the mechanical performance of GSC,with findings indicating a decrease in stiffness,increased plastic deformation,and reduced energy dissipation as the proportion of internal defects rises.The analysis reveals that the internal defects in GSC act as stress concentration points,leading to early crack formation and accelerated damage under cyclic loading.By improving construction quality and reducing the prevalence of grouting defects,the adverse effects on the performance of GSC can be mitigated.Compared to defect-free specimens,those with defects of 30%exhibited a 31.23%reduction in horizontal bearing capacity,highlighting the importance of minimizing defects in practical engineering applications.展开更多
Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-...Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.展开更多
The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in...The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.展开更多
With the rapid development of various applications of Information Technology,big data are increasingly generated by social network services(SNS)nowadays.The designers and providers of SNS distribute different client a...With the rapid development of various applications of Information Technology,big data are increasingly generated by social network services(SNS)nowadays.The designers and providers of SNS distribute different client applications for PC,Mobile phone,IPTV etc.,so that users can obtain related service via mobile or traditional Internet.Good scalability and considerably short time delay are important indices for evaluating social network systems.As a result,investigating and mining the principle of users’behaviors is an important issue which can guide service providers to establish optimal systems with SNS.On the basis of analyzing the characteristics of social network system,this paper constructed a Stochastic Petri Net(SPN)model for describing the behaviors of three users for SNS.Moreover,the scalability of users’behaviors of SNS was studied by extending the SPN model of three users to the one of four users.Furthermore,average time delay was chosen as the performance index to evaluate the performance of these two constructed SPN models with Stochastic Petri Net Package(SPNP)6.0.For different parameters of number of connections,traffic load and buffer size,various trends and numerical results are derived thereby.The methodology of modeling and simulation in this paper can be further used to study the performance of SNS.展开更多
The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation met...The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.展开更多
This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model bui...This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;...An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.展开更多
The present study investigated one Chinese college learner's requesting performance by analyzing the DCT data produced in four different situations.The results indicated that the learner favored the indirect strat...The present study investigated one Chinese college learner's requesting performance by analyzing the DCT data produced in four different situations.The results indicated that the learner favored the indirect strategy in all four situations,and was able to produce longer requests with a large portion of external modification.However,the learner lacked sufficient knowledge and ability to control over a wide range of internal modification,relied heavily on external modification,produced lengthy grounders,and failed to show enough sensitivity to imposition variation.展开更多
基金supported by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.Q2023J012).
文摘Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
基金financial support of the Scientific Research Funds of Huaqiao University (605-50Y17073)
文摘The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.
基金supported by the National Key R&D Project from Ministry of Science and Technology,China(2021YFA1201603)National Natural Science Foundation of China(52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nearly a decade of advancements has yielded nearly thousands of research articles in this domain.Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment.Nonetheless,there is a gap in comprehensive summaries and performance evaluations of TENG structural designs.This paper delineates six innovative structural designs,focusing on enhancing internal device output and adapting to external environments:high space utilization,hybrid generator,mechanical gain,broadband response,multi-directional operation,and hybrid energy-harvesting systems.We summarize the prevailing trends in device structure design identified by the research community.Furthermore,we conduct a meticulous comparison of the electrical performance of these devices under motorized,simulated wave,and real marine conditions,while also assessing their sustainability in terms of device durability and mechanical robustness.In conclusion,the paper outlines future research avenues and discusses the obstacles encountered in the TENG field.This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC3008001)the National Natural Science Foundation of China(Grant No.52371357)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515240035)。
文摘Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.
文摘We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
基金funded by the Postdoctoral Fellowship Program of CPSF(China),grant number GZ20232369.No part of the study(design,data collection,and curation analysis,manuscript preparation or publication)was influenced by the funder.
文摘Background:In China,the policy of rotating teachers between urban and rural schools has been implemented to reduce educational disparities and ensure equitable access to quality education.These teachers face unique professional and emotional challenges during the rotation process,making their emotional labor a critical factor influencing their job performance.This study aimed to explore the relationship between rotating teachers’emotional labor strategies and job performance.Methods:This study conducted a cross-sectional survey among 577 rotating teachers selected through stratified random sampling from primary and secondary schools in Chinese mainland.Date were collected using the Teacher Emotional Labor Scale and the Teacher Job Performance Scale.Latent profile analysis(LPA)was employed to identify distinct categories of emotional labor strategies:indifferent,moderately engaged,naturally invested,proactively adjusted,and emotionally elevated.Results:Teachers in the naturally invested and proactively adjusted types demonstrated relatively higher job performance scores,followed by those in the emotionally elevated type.In contrast,teachers in the indifferent and moderate engagement types exhibited comparatively lower scores(F=25.858,p<0.001,η^(2)=0.153).These findings indicate a practical significance,suggestion that flexible and adaptive use emotional labor strategies is strongly associated with enhanced job performance.Conclusion:This study demonstrates that rotating teachers’job performance differs significantly across distinct emotional labor profiles,with balanced and adaptive emotional regulation emerging as a key determinant of higher performance.By identifying and characterizing individual-centered emotional labor profiles,the study advances understanding of how emotional regulation contributes to teachers’professional effectiveness.These results underscore the importance of providing systematic and personalized support to help rotating teachers develop adaptive emotional regulation skills.Targeted guidance should enable teachers to appropriately express and adjust their emotions,thereby avoiding both excessive and insufficient emotional labor and promoting sustainable professional development.
文摘We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.
基金Science and Technology Plan Project of Xizang Autonomous Region,China under Grant No.XZ202501YD0007。
文摘A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.
基金National Key R&D Program of China under Grant No.2022YFC3003600National Natural Science Foundation of China(NSFC)under Grant No.51978023。
文摘Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution function provide valuable information.In this study,a simulation-based framework to evaluate these probabilistic characteristics in water distribution systems(WDSs)during post-earthquake recovery is developed.The framework first calculates pipeline failure probabilities using seismic fragility models and then generates damage samples through quasi-Monte Carlo simulations with Sobol’s sequence for faster convergence.System performance is assessed using a hydraulic model,and recovery simulations produce time-varying performance curves,where the dynamic importance of unrepaired damage determines repair sequences.Finally,the probabilistic characteristics of seismic performance indicators,resilience index,resilience loss,and recovery time are evaluated.The framework is applied in two benchmark WDSs with different layouts to investigate the probabilistic characteristics of their seismic performance and resilience.Application results show that the cumulative distribution function reveals the variations in resilience indicators for different exceedance probabilities,and there are dramatic differences among the recovery times corresponding to the system performance recovery targets of 80%,90%,and 100%.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
文摘Precast concrete structures have gained popularity due to their advantages.However,the seismic performance of their connection joints remains an area of ongoing research and improvement.Grouted Sleeve Connection(GSC)offers a solution for connecting reinforcements in precast components,but their vulnerability to internal defects,such as construction errors and material variability,can significantly impact performance.This article presents a finite element analysis(FEA)to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns.Four finite elementmodels representing GSC with varying degrees of defects were used to investigate the effects on mechanical properties,including bearing capacity,stress-deformation behavior,and stiffness degradation.The study highlights the significant impact of internal grouting defects on the mechanical performance of GSC,with findings indicating a decrease in stiffness,increased plastic deformation,and reduced energy dissipation as the proportion of internal defects rises.The analysis reveals that the internal defects in GSC act as stress concentration points,leading to early crack formation and accelerated damage under cyclic loading.By improving construction quality and reducing the prevalence of grouting defects,the adverse effects on the performance of GSC can be mitigated.Compared to defect-free specimens,those with defects of 30%exhibited a 31.23%reduction in horizontal bearing capacity,highlighting the importance of minimizing defects in practical engineering applications.
文摘Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.
基金The National Key Technologies R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAJ04B04,2006BAJ04A05,2006BAJ04A13)
文摘The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.
基金supported by the Excellent Young Teachers Training Project (the second level,Project Number:YXJS201508)Teaching reform projects of Communication University of China (Project Number:JG190033,Project Number:JG22062).
文摘With the rapid development of various applications of Information Technology,big data are increasingly generated by social network services(SNS)nowadays.The designers and providers of SNS distribute different client applications for PC,Mobile phone,IPTV etc.,so that users can obtain related service via mobile or traditional Internet.Good scalability and considerably short time delay are important indices for evaluating social network systems.As a result,investigating and mining the principle of users’behaviors is an important issue which can guide service providers to establish optimal systems with SNS.On the basis of analyzing the characteristics of social network system,this paper constructed a Stochastic Petri Net(SPN)model for describing the behaviors of three users for SNS.Moreover,the scalability of users’behaviors of SNS was studied by extending the SPN model of three users to the one of four users.Furthermore,average time delay was chosen as the performance index to evaluate the performance of these two constructed SPN models with Stochastic Petri Net Package(SPNP)6.0.For different parameters of number of connections,traffic load and buffer size,various trends and numerical results are derived thereby.The methodology of modeling and simulation in this paper can be further used to study the performance of SNS.
基金Supported by the Natural Science Foundation of China(61076019)the China Postdoctoral Science Foundation(20100481134)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2008387)the Graduate Student Innovation Foundation of Jiangsu Province(CX07B-105z)~~
文摘The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.
文摘This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金The National Natural Science Foundation of China(No.51678141,51378112)the Open Fund from the National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation,Southwest Jiaotong University(No.SWJTUGGS-2014001)
文摘An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.
文摘The present study investigated one Chinese college learner's requesting performance by analyzing the DCT data produced in four different situations.The results indicated that the learner favored the indirect strategy in all four situations,and was able to produce longer requests with a large portion of external modification.However,the learner lacked sufficient knowledge and ability to control over a wide range of internal modification,relied heavily on external modification,produced lengthy grounders,and failed to show enough sensitivity to imposition variation.