The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple st...The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.展开更多
Predicting player performance in sports is a critical challenge with significant implications for team success,fan engagement,and financial outcomes.Although,inMajor League Baseball(MLB),statistical methodologies such...Predicting player performance in sports is a critical challenge with significant implications for team success,fan engagement,and financial outcomes.Although,inMajor League Baseball(MLB),statistical methodologies such as sabermetrics have been widely used,the dynamic nature of sports makes accurate performance prediction a difficult task.Enhanced forecasts can provide immense value to team managers by aiding strategic player contract and acquisition decisions.This study addresses this challenge by employing the temporal fusion transformer(TFT),an advanced and cutting-edge deep learning model for complex data,to predict pitchers’earned run average(ERA),a key metric in baseball performance analysis.The performance of the TFT model is evaluated against recurrent neural network-based approaches and existing projection systems.In experimental results,the TFT based model consistently outperformed its counterparts,demonstrating superior accuracy in pitcher performance prediction.By leveraging the advanced capabilities of TFT,this study contributes to more precise player evaluations and improves strategic planning in baseball.展开更多
Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods ...Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi...Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators.展开更多
After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation ...After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.展开更多
Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improveme...Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.展开更多
Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of these devices to a successful conclusion. In this paper, a review a...Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of these devices to a successful conclusion. In this paper, a review and analysis of the major loss mechanisms and loss models, used to determine the efficiency of a single stage centrifugal compressor, and a subsequent examination to determine an appropriate loss correlation set for estimating the isentropic efficiency in preliminary design stages of centrifugal compressors, were developed. Several semi-empirical correlations,commonly used to predict the efficiency of centrifugal compressors, were implemented in FORTRAN code and then were compared with experimental results in order to establish a loss correlation set to determine, with good approximation, the isentropic efficiency of single stage compressor.The aim of this study is to provide a suitable loss correlation set for determining the isentropic efficiency of a single stage centrifugal compressor, because, with a large amount of loss mechanisms and correlations available in the literature, it is difficult to ascertain how many and which correlations to employ for the correct prediction of the efficiency in the preliminary stage design of a centrifugal compressor. As a result of this study, a set of correlations composed by nine loss mechanisms for single stage centrifugal compressors, conformed by a rotor and a diffuser, are specified.展开更多
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f...A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.展开更多
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in...Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.展开更多
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ...In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.展开更多
This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical...This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.展开更多
Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since ...Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.展开更多
Accurate performance prediction of Grid workflow activities can help Grid schedulers map activitiesto appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural networkto predict the p...Accurate performance prediction of Grid workflow activities can help Grid schedulers map activitiesto appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural networkto predict the performance of Grid workflow activities.Experimental results for two kinds of real worldGrid workflow activities are presented to show effectiveness of our approach.展开更多
Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor ...Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.展开更多
Accurate prediction of performance decay law is an important basis for long-term planning of maintenance strategy.The statistical regression prediction model is the most widely employed method to calculate pavement pe...Accurate prediction of performance decay law is an important basis for long-term planning of maintenance strategy.The statistical regression prediction model is the most widely employed method to calculate pavement performance due to its advantages such as the small amount of calculation and good accuracy,but the traditional prediction model seems not applicable to the high maintenance level areas with excellent pavement conditions.In this paper,the service life and the cumulative number of the axle load were determined as the independent variables of prediction models of pavement performance.The pavement condition index(PCI)and rutting depth index(RDI)were selected as maintenance decision control indexes to establish the unified prediction model of PCI and RDI respectively by applying the cosine deterioration equation.Results reveal that the deterioration law of PCI presents an anti-S type or concave type and the deterioration law of RDI shows an obvious concave type.The prediction model proposed in this study added the pavement maintenance standard factor d,which brings the model parameterα(reflecting the road life)and the deterioration equations are more applicable than the traditional standard equations.It is found that the fitting effects of PCI and RDI prediction models with different traffic grades are relatively similar to the actual service state of the pavements.展开更多
The selection of loss models has a significant effect on the one-dimensional mean streamline analysis for obtaining the performance of centrifugal compressors.In this study,a set of optimized loss models is proposed b...The selection of loss models has a significant effect on the one-dimensional mean streamline analysis for obtaining the performance of centrifugal compressors.In this study,a set of optimized loss models is proposed based on the classical loss models suggested by Aungier,Coppage,and Jansen.The proportions and variation laws of losses predicted by the three sets of models are discussed on the NASA Low-Speed-Centrifugal-Compressor(LSCC)under the mass flow of 22 kg/s to 36 kg/s.The results indicate that the weights of Skin friction loss,Diffusion loss,Disk friction loss,Clearance loss,Blade loading loss,Recirculation loss,and Vaneless diffuser loss are greater than 10%,which is dominant for performance prediction.Therefore,these losses are considered in the composition of new loss models.In addition,the multi-objective optimization method with the Genetic Algorithm(GA)is applied to the correction of loss coefficients to obtain the final optimization loss models.Compared with the experimental data,the maximum relative error of adiabatic the three classical models is 7.22%,while the maximum relative error calculated by optimized loss models is 1.22%,which is reduced by 6%.Similarly,compared with the original model,the maximum relative error of the total pressure ratio is also reduced.As a result,the present optimized models provide more reliable performance prediction in both tendency and accuracy than the classical loss models.展开更多
Traditional feeding strategy during lactation can result in nutrient deficiencies and negatively impact long-term productivity,compromising both the sustainability and profitability of the swine industry.Precision fee...Traditional feeding strategy during lactation can result in nutrient deficiencies and negatively impact long-term productivity,compromising both the sustainability and profitability of the swine industry.Precision feeding,supported by decision-making systems built on advanced predictive models,offers a promising solution to address these challenges.This study aimed to develop prediction models for weaning performance,focusing on key indicators such as weaned litter weight(WLW),weaned litter size(WLS),dry matter in milk(DMm),and nitrogen in milk(Nm).The models integrate farm management practices and feed nutrient composition,providing a data-driven framework for optimizing performance.A total of 10,089 observations were collected from 17 trial pig farms across eight provinces in China.Eleven statistical and machine learning(ML)regression algorithms were employed,incorporating stratified sampling and the recursive feature elimination method for feature selection.The findings demonstrated that the ensemble learning models,specifically random forest and gradient boosting decision tree regression,delivered the best overall performance,with a coefficient of determination(R2)ranging from 0.40 to 0.80 and a mean absolute error(MAE)between 0.11 and 4.36.The shapley additive explanations(SHAP)heatmap used for feature importance analysis revealed that,although the key predictors of weaning performance varied across models,this study newly identified lactation duration,birth litter weight,parity,and backfat thickness on the 7th day of lactation(L.d7BF)as consistently important features across different models.The discrepancies between correlation analysis and feature importance suggest the presence of non-linear relationships,feature interactions,and multicollinearity within the dataset.This study presents a novel framework that provides valuable insights into the factors influencing weaning performance under diverse management practices and feed nutrient conditions.The optimized prediction model can be employed to guide real-time sensor-based precision feeding systems,thereby enhancing efficiency and sustainability in swine production.展开更多
Accurate chiller performance prediction is crucial for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems.Data-driven models commonly used to enhance chiller performance often rel...Accurate chiller performance prediction is crucial for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems.Data-driven models commonly used to enhance chiller performance often rely on sparse data collected under restricted conditions.These models must extrapolate beyond their training data in practical applications,but they generally lack the generalization capability needed for reliable predictions outside their training range.Additionally,their limited interpretability hampers understanding of the physical processes affecting chiller performance,complicating fault identification and performance optimization.To address these issues,this study embeds physical neurons in physics-informed neural networks(EP-PINNs)to enhance chiller performance prediction.By leveraging prior physical knowledge,physical neurons are introduced and embedded into the neural network,forming a neural network architecture with intrinsic physics-based information flow.Simultaneously,simplified physical loss terms are used to guide the training process.The proposed EP-PINNs were applied to predict the performance of four different chillers,and the results demonstrated their high prediction accuracy.Compared to data-driven models,the EP-PINNs exhibited significantly improved generalization capability and interpretability.These advantages highlight the practical value of EP-PINNs in HVAC equipment performance prediction.展开更多
The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.Th...The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.The rise of artificial intelligence provides a way to meet the above challenges.This article elaborates on research overview of artificial neural network(ANN)and its prediction for concrete strength,deformation,and durability.The focus is on the comparative analysis of the prediction accuracy for different types of neural networks.Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the practical engineering applications.To further improve the applicability of ANN in concrete,the model can consider the combination of multiple algorithms and the expansion of data samples.The review can provide new research ideas for development of concrete performance prediction.展开更多
基金supported by Science and Technology Project of Quzhou(Nos.2023K256,2023NC08,2022K41)Research Grants Program of Department of Education of Zhejiang Province(Nos.Y202455709,Y202456243)Hunan Province Key Field R&D Plan Project(No.2022GK2068).
文摘The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.
基金supported by SKKU Global Research Platform Research Fund,Sungkyunkwan University,2024-2025.
文摘Predicting player performance in sports is a critical challenge with significant implications for team success,fan engagement,and financial outcomes.Although,inMajor League Baseball(MLB),statistical methodologies such as sabermetrics have been widely used,the dynamic nature of sports makes accurate performance prediction a difficult task.Enhanced forecasts can provide immense value to team managers by aiding strategic player contract and acquisition decisions.This study addresses this challenge by employing the temporal fusion transformer(TFT),an advanced and cutting-edge deep learning model for complex data,to predict pitchers’earned run average(ERA),a key metric in baseball performance analysis.The performance of the TFT model is evaluated against recurrent neural network-based approaches and existing projection systems.In experimental results,the TFT based model consistently outperformed its counterparts,demonstrating superior accuracy in pitcher performance prediction.By leveraging the advanced capabilities of TFT,this study contributes to more precise player evaluations and improves strategic planning in baseball.
基金supported by the National Natural Science Foundation of China (No.51701061)the Natural Science Foundation of Hebei Province (Nos.E2023202047 and E2021202075)+1 种基金the Key-Area R&D Program of Guangdong Province (No.2020B0101340004)Guangdong Academy of Science (2021GDASYL-20210102002).
文摘Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金the National Natural Science Foundation of China under Grant Nos.U2268204,62172061 and 61662017National Key R&D Program of China under Grant Nos.2020YFB1711800 and 2020YFB1707900+1 种基金the Science and Technology Project of Sichuan Province under Grant Nos.2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322the Guangxi Natural Science Foundation Project under Grant No.2021GXNSFAA220074.
文摘Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators.
文摘After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Natural Science Foundation of China (Grant No. 50509009)
文摘Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.
文摘Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of these devices to a successful conclusion. In this paper, a review and analysis of the major loss mechanisms and loss models, used to determine the efficiency of a single stage centrifugal compressor, and a subsequent examination to determine an appropriate loss correlation set for estimating the isentropic efficiency in preliminary design stages of centrifugal compressors, were developed. Several semi-empirical correlations,commonly used to predict the efficiency of centrifugal compressors, were implemented in FORTRAN code and then were compared with experimental results in order to establish a loss correlation set to determine, with good approximation, the isentropic efficiency of single stage compressor.The aim of this study is to provide a suitable loss correlation set for determining the isentropic efficiency of a single stage centrifugal compressor, because, with a large amount of loss mechanisms and correlations available in the literature, it is difficult to ascertain how many and which correlations to employ for the correct prediction of the efficiency in the preliminary stage design of a centrifugal compressor. As a result of this study, a set of correlations composed by nine loss mechanisms for single stage centrifugal compressors, conformed by a rotor and a diffuser, are specified.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BK2004406)Provincial Innovation Foundation for Graduate Students of Jiangsu, China(No.1223000053
文摘A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.
基金National Natural Science Foundation of China (Grant No.52178393)the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No.2020TD005)Science and Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.(Grant No.DQJ-2020-B07)。
文摘Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.
文摘In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.
基金Supported by the National Natural Science Foundation of China (40474055)
文摘This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.
文摘Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.
基金Supported by the European Union through the IST-034601 edutain@grid project
文摘Accurate performance prediction of Grid workflow activities can help Grid schedulers map activitiesto appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural networkto predict the performance of Grid workflow activities.Experimental results for two kinds of real worldGrid workflow activities are presented to show effectiveness of our approach.
文摘Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.
基金the National Key Research and Development Program of China with Grant No.2018YFB1600100the National Natural Science Foundation of China with Grant No.51978219 and No.51878228.
文摘Accurate prediction of performance decay law is an important basis for long-term planning of maintenance strategy.The statistical regression prediction model is the most widely employed method to calculate pavement performance due to its advantages such as the small amount of calculation and good accuracy,but the traditional prediction model seems not applicable to the high maintenance level areas with excellent pavement conditions.In this paper,the service life and the cumulative number of the axle load were determined as the independent variables of prediction models of pavement performance.The pavement condition index(PCI)and rutting depth index(RDI)were selected as maintenance decision control indexes to establish the unified prediction model of PCI and RDI respectively by applying the cosine deterioration equation.Results reveal that the deterioration law of PCI presents an anti-S type or concave type and the deterioration law of RDI shows an obvious concave type.The prediction model proposed in this study added the pavement maintenance standard factor d,which brings the model parameterα(reflecting the road life)and the deterioration equations are more applicable than the traditional standard equations.It is found that the fitting effects of PCI and RDI prediction models with different traffic grades are relatively similar to the actual service state of the pavements.
基金supports of National Natural Science Foundation of China(Grant No.52076079)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)Fundamental Research Funds for the Central Universities,China(Grant No.2021MS079/Grant No.2022MS081)。
文摘The selection of loss models has a significant effect on the one-dimensional mean streamline analysis for obtaining the performance of centrifugal compressors.In this study,a set of optimized loss models is proposed based on the classical loss models suggested by Aungier,Coppage,and Jansen.The proportions and variation laws of losses predicted by the three sets of models are discussed on the NASA Low-Speed-Centrifugal-Compressor(LSCC)under the mass flow of 22 kg/s to 36 kg/s.The results indicate that the weights of Skin friction loss,Diffusion loss,Disk friction loss,Clearance loss,Blade loading loss,Recirculation loss,and Vaneless diffuser loss are greater than 10%,which is dominant for performance prediction.Therefore,these losses are considered in the composition of new loss models.In addition,the multi-objective optimization method with the Genetic Algorithm(GA)is applied to the correction of loss coefficients to obtain the final optimization loss models.Compared with the experimental data,the maximum relative error of adiabatic the three classical models is 7.22%,while the maximum relative error calculated by optimized loss models is 1.22%,which is reduced by 6%.Similarly,compared with the original model,the maximum relative error of the total pressure ratio is also reduced.As a result,the present optimized models provide more reliable performance prediction in both tendency and accuracy than the classical loss models.
基金supported by the National Key R&D Program(2021YFD1300401)the Excellent Youth Foundation of Hunan Province(2022JJ20027)the Science and Technology Major Project of Yunnan Province(202202AE090032).
文摘Traditional feeding strategy during lactation can result in nutrient deficiencies and negatively impact long-term productivity,compromising both the sustainability and profitability of the swine industry.Precision feeding,supported by decision-making systems built on advanced predictive models,offers a promising solution to address these challenges.This study aimed to develop prediction models for weaning performance,focusing on key indicators such as weaned litter weight(WLW),weaned litter size(WLS),dry matter in milk(DMm),and nitrogen in milk(Nm).The models integrate farm management practices and feed nutrient composition,providing a data-driven framework for optimizing performance.A total of 10,089 observations were collected from 17 trial pig farms across eight provinces in China.Eleven statistical and machine learning(ML)regression algorithms were employed,incorporating stratified sampling and the recursive feature elimination method for feature selection.The findings demonstrated that the ensemble learning models,specifically random forest and gradient boosting decision tree regression,delivered the best overall performance,with a coefficient of determination(R2)ranging from 0.40 to 0.80 and a mean absolute error(MAE)between 0.11 and 4.36.The shapley additive explanations(SHAP)heatmap used for feature importance analysis revealed that,although the key predictors of weaning performance varied across models,this study newly identified lactation duration,birth litter weight,parity,and backfat thickness on the 7th day of lactation(L.d7BF)as consistently important features across different models.The discrepancies between correlation analysis and feature importance suggest the presence of non-linear relationships,feature interactions,and multicollinearity within the dataset.This study presents a novel framework that provides valuable insights into the factors influencing weaning performance under diverse management practices and feed nutrient conditions.The optimized prediction model can be employed to guide real-time sensor-based precision feeding systems,thereby enhancing efficiency and sustainability in swine production.
基金supported by the National Natural Science Foundation of China(No.22441020).
文摘Accurate chiller performance prediction is crucial for improving the energy efficiency of heating,ventilation,and air conditioning(HVAC)systems.Data-driven models commonly used to enhance chiller performance often rely on sparse data collected under restricted conditions.These models must extrapolate beyond their training data in practical applications,but they generally lack the generalization capability needed for reliable predictions outside their training range.Additionally,their limited interpretability hampers understanding of the physical processes affecting chiller performance,complicating fault identification and performance optimization.To address these issues,this study embeds physical neurons in physics-informed neural networks(EP-PINNs)to enhance chiller performance prediction.By leveraging prior physical knowledge,physical neurons are introduced and embedded into the neural network,forming a neural network architecture with intrinsic physics-based information flow.Simultaneously,simplified physical loss terms are used to guide the training process.The proposed EP-PINNs were applied to predict the performance of four different chillers,and the results demonstrated their high prediction accuracy.Compared to data-driven models,the EP-PINNs exhibited significantly improved generalization capability and interpretability.These advantages highlight the practical value of EP-PINNs in HVAC equipment performance prediction.
基金funded by the Ningbo Construction Research Project(Nos.2024-23,2024-20)the National Natural Science Foundation of China(No.52478281)the Ningbo Public Welfare Science and Technology Project(No.2024S077).
文摘The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.The rise of artificial intelligence provides a way to meet the above challenges.This article elaborates on research overview of artificial neural network(ANN)and its prediction for concrete strength,deformation,and durability.The focus is on the comparative analysis of the prediction accuracy for different types of neural networks.Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the practical engineering applications.To further improve the applicability of ANN in concrete,the model can consider the combination of multiple algorithms and the expansion of data samples.The review can provide new research ideas for development of concrete performance prediction.