This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation met...The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.展开更多
This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model bui...This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
Considering the estimation accuracy reduction of Frequency Difference of Arrival (FDOA) caused by relative Doppler companding, a joint Time Difference of Arrival (TDOA), FDOA and differential Doppler rate estimati...Considering the estimation accuracy reduction of Frequency Difference of Arrival (FDOA) caused by relative Doppler companding, a joint Time Difference of Arrival (TDOA), FDOA and differential Doppler rate estimation method is proposed and its Cramer-Rao low bound is derived in this paper. Firstly, second-order ambiguity function is utilized to reduce the dimensionality and estimate initial TDOA and differential Doppler rate. Secondly, the TDOA estimation is updated and FDOA is obtained using cross ambiguity function, in which relative Doppler com- panding is compensated by the existing differential Doppler rate. Thirdly, differential Doppler rate estimation is updated using cross estimator. Theoretical analysis on estimation variance and Cramer-Rao low bound shows that the final estimation of TDOA, FDOA and differential Doppler rate performs well at both low and high signal-noise ratio, although the initial estimation accuracy of TDOA and differential Doppler rate is relatively poor under low signal-noise ratio conditions. Simulation results finally verify the theoretical analysis and show that the proposed method can overcome relative Doppler companding problem and performs well for all TDOA, FDOA and differential Doppler rate estimation.展开更多
Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section ar...Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.展开更多
Serving multiple cell-edge mobile terminals poses multifaceted challenges due to the increased transmission power and interferences, which could be overcome by relay communications. With the recent advancement of 5G t...Serving multiple cell-edge mobile terminals poses multifaceted challenges due to the increased transmission power and interferences, which could be overcome by relay communications. With the recent advancement of 5G technologies, non-orthogonal multiple access(NOMA) has been used at relay node to transmit multiple messages simultaneously to multiple cell-edge users. In this paper, a Collaborative NOMA Assisted Relaying(CNAR) system for 5G is proposed by enabling the collaboration of source-relay(S-R) and relay-destination(R-D) NOMA links. The relay node of the CNAR decodes the message for itself from S-R NOMA signal and transmits the remaining messages to the multiple cell-edge users in R-D link. A simplified-CNAR(S-CNAR) system is then developed to reduce the relay complexity. The outage probabilities for both systems are analyzed by considering outage behaviors in S-R and R-D links separately. To guarantee the data rate, the optimal power allocation among NOMA users is achieved by minimizing the outage probability. The ergodic sum capacity in high SNR regime is also approximated. Our mathematical analysis and simulation results show that CNAR system outperforms existing transmission strategies and S-CNAR reaches similar performance with much lower complexity.展开更多
Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage ...Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.展开更多
The mechanism of the effects of anisotropic permeability on well patterns and reservoir development are investigated by coordinate transformation, fluid flow analysis, and reservoir development concepts. Anisotropy of...The mechanism of the effects of anisotropic permeability on well patterns and reservoir development are investigated by coordinate transformation, fluid flow analysis, and reservoir development concepts. Anisotropy of permeability has reconstructive effects on well patterns. The originally designed flooding units are broken up, and new pattern units are made up of the wells that belong to different original units. The behavior possesses strong randomness, and leads to a complicated relationship among the injection and production wells, and unpredictable productivity of the formations. To prevent the break-up of well patterns, well lines should be either parallel or perpendicular to the maximum principal direction of the anisotropic permeability (i.e. the fracture direction). To optimize the development effects ofanisotropic formations, the latitudinal and longitudinal well spacing of the well network are calculated from the principal values of the anisotropic permeability.展开更多
Preforming process would change yarn angle and yarn orientation,its influence on the material properties and material orientations needs to be considered in the performance analysis.However,most current performance mo...Preforming process would change yarn angle and yarn orientation,its influence on the material properties and material orientations needs to be considered in the performance analysis.However,most current performance models fail to account for the preforming effect.An integrated performance model accounting for the impact of preforming has been developed.In this integrated model,part geometry,yarn angle and orientation after preforming of multiple prepreg layers are predicted by Finite Element Analysis(FEA)using a non-orthogonal constitutive law.Experiments were conducted to validate the preforming simulation for a single dome composites structure made by two prepreg layers with different initial fiber orientations.Performance analysis until failure was then conducted for the single dome structure to validate the integrated performance model.Comparison between simulation and experiment shows that not only the failure mode and failure zone,but also the force-displacement curve during compression process are captured correctly by the performance model,demonstrating the effectiveness of the newly proposed model in accounting for the impact of preforming process.展开更多
The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
In this study, a vertical axis tidal turbine with flexible blades is investigated. The focus is on analyzing the effect of flexible airfoils types and blade flexibility on turbine net output power. To this end, five d...In this study, a vertical axis tidal turbine with flexible blades is investigated. The focus is on analyzing the effect of flexible airfoils types and blade flexibility on turbine net output power. To this end, five different flexible airfoils (Symmetric and Non-symmetric) are employed. The results show that the use of a thick flexible symmetric airfoil can effectively increase output power compared to that achievable with a conventional rigid blade. Moreover, the use of highly flexible blades, as opposed to less flexible or rigid blades, is not recommended.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.T...Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules...Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules under the measurement of four popular objectives are respectively given in this paper. Similar analysis method and conclusions can be generalized to static identical parallel machine and single machine scheduling problem.展开更多
Micro-forging(MF)is a novel surface modification technology which is capable of smoothening and strengthening the workpiece surface simultaneously.Based on analysis of the mechanism and energy conversion of micro-forg...Micro-forging(MF)is a novel surface modification technology which is capable of smoothening and strengthening the workpiece surface simultaneously.Based on analysis of the mechanism and energy conversion of micro-forging process,an electromagnetically driven microforging system is developed.To further grasp the kinetic characteristic of the equipment,a simulation model is established and its accuracy is verified.With the help of simulation and experimental results,we propose an input voltage optimization method,which drives the micro-forging head moving in a uniform and stable way.In this study,the influence of MF on surface integrity of Ti-6 Al-4 V(TC4)is firstly reported.Experimental results show that MF treatment reduces surface roughness(Ra)and increases micro-hardness by 48%and 11.8%at most,respectively.Besides,a compressive stress layer with an amplitude of-1000 MPa and a depth of 0.8 mm is observed.This study analyzes the performance and reveals the potential of micro-forging technology,which lays a solid foundation for expanding its application in TC4 surface modification.展开更多
In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization n...In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization non-sensitive of the free-space channel,but also reduce the noise introduced by phase interference.However,arbitrary continuous modulation can not be carried out in the past polarization coding,resulting in that the signal state can not obtain arbitrary continuous value in Poincare space,and the security analysis of CV-QKD using polarized coherent-states in free space is not complete.Here we propose a new modulation method to extend the modulation range of signal states with an optical-fiber-based polarization controller.In particular,in terms of the main influence factors in the free-space channel,we utilize the beam extinction and elliptical model when considering the transmittance and adopt the formulation of secret key rate.In addition,the performance of the proposed scheme under foggy weather is also taken into consideration to reveal the influence of severe weather.Numerical simulation shows that the proposed scheme is seriously affected by attenuation under foggy weather.The protocol fails when visibility is less than 1 km.At the same time,the wavelength can affect the performance of the proposed scheme.Specifically,under foggy weather,the longer the wavelength,the smaller the attenuation coefficient,and the better the transmission performance.Our proposed scheme can expand the modulation range of signal state,and supplement the security research of the scheme in the free-space channel,thus can provide theoretical support for subsequent experiments.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
A numerical simulation model of plenoptic sensor aberration wavefront detection is established to simulate and analyze the detection performance of plenoptic sensor aberration wavefront for different turbulence intens...A numerical simulation model of plenoptic sensor aberration wavefront detection is established to simulate and analyze the detection performance of plenoptic sensor aberration wavefront for different turbulence intensities.The results show that the plenoptic sensor can achieve better distortion wavefront detection,and its wavefront detection accuracy improves with turbulence intensity.The unique optical structure design of the plenoptic sensor makes it more suitable for aberration wavefront detection in strong turbulent conditions.The wavefront detection performance of the plenoptic sensor is not only related to its wavefront reconstruction algorithm but also closely related to its structural parameter settings.The influence of structural parameters on the wavefront detection accuracy of plenoptic sensors under different turbulence intensities is simulated and analyzed.The variation law of wavefront detection accuracy and structural parameters under different turbulence intensities is summarized to provide a reference for the structural design and parameter optimization of plenoptic sensors.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
基金Supported by the Natural Science Foundation of China(61076019)the China Postdoctoral Science Foundation(20100481134)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2008387)the Graduate Student Innovation Foundation of Jiangsu Province(CX07B-105z)~~
文摘The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.
文摘This paper presents RTSS simulation software with the capability for graphical model building and animation display. The RTSS simulation software consists of three separated parts: the simulation kernel, the model building program and the result post processing program. The RTSS may run in the client/server mode. The main features of the RTSS software are more modular, more flexible and easier to upgrade. RTSS is built on object oriented technology, so it has more flexibility. The RTSS model of a system is an open queueing network. For modeling various data acquisition systems, communication networks and flexible manufacturing systems at different abstraction levels, RTSS has proven to be an extremely useful tool for performance analysis.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金supported by the National Natural Science Foundation of China(No.61671273)
文摘Considering the estimation accuracy reduction of Frequency Difference of Arrival (FDOA) caused by relative Doppler companding, a joint Time Difference of Arrival (TDOA), FDOA and differential Doppler rate estimation method is proposed and its Cramer-Rao low bound is derived in this paper. Firstly, second-order ambiguity function is utilized to reduce the dimensionality and estimate initial TDOA and differential Doppler rate. Secondly, the TDOA estimation is updated and FDOA is obtained using cross ambiguity function, in which relative Doppler com- panding is compensated by the existing differential Doppler rate. Thirdly, differential Doppler rate estimation is updated using cross estimator. Theoretical analysis on estimation variance and Cramer-Rao low bound shows that the final estimation of TDOA, FDOA and differential Doppler rate performs well at both low and high signal-noise ratio, although the initial estimation accuracy of TDOA and differential Doppler rate is relatively poor under low signal-noise ratio conditions. Simulation results finally verify the theoretical analysis and show that the proposed method can overcome relative Doppler companding problem and performs well for all TDOA, FDOA and differential Doppler rate estimation.
基金This project is supported by National Natural Science Foundation of China (No.60275031)Municipal Key Lab Open Fund of Beijing, China (No.KP01-072200384).
文摘Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.
文摘Serving multiple cell-edge mobile terminals poses multifaceted challenges due to the increased transmission power and interferences, which could be overcome by relay communications. With the recent advancement of 5G technologies, non-orthogonal multiple access(NOMA) has been used at relay node to transmit multiple messages simultaneously to multiple cell-edge users. In this paper, a Collaborative NOMA Assisted Relaying(CNAR) system for 5G is proposed by enabling the collaboration of source-relay(S-R) and relay-destination(R-D) NOMA links. The relay node of the CNAR decodes the message for itself from S-R NOMA signal and transmits the remaining messages to the multiple cell-edge users in R-D link. A simplified-CNAR(S-CNAR) system is then developed to reduce the relay complexity. The outage probabilities for both systems are analyzed by considering outage behaviors in S-R and R-D links separately. To guarantee the data rate, the optimal power allocation among NOMA users is achieved by minimizing the outage probability. The ergodic sum capacity in high SNR regime is also approximated. Our mathematical analysis and simulation results show that CNAR system outperforms existing transmission strategies and S-CNAR reaches similar performance with much lower complexity.
基金Project(61563032)supported by the National Natural Science Foundation of ChinaProject(18JR3RA133)supported by Gansu Basic Research Innovation Group,China
文摘Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.
文摘The mechanism of the effects of anisotropic permeability on well patterns and reservoir development are investigated by coordinate transformation, fluid flow analysis, and reservoir development concepts. Anisotropy of permeability has reconstructive effects on well patterns. The originally designed flooding units are broken up, and new pattern units are made up of the wells that belong to different original units. The behavior possesses strong randomness, and leads to a complicated relationship among the injection and production wells, and unpredictable productivity of the formations. To prevent the break-up of well patterns, well lines should be either parallel or perpendicular to the maximum principal direction of the anisotropic permeability (i.e. the fracture direction). To optimize the development effects ofanisotropic formations, the latitudinal and longitudinal well spacing of the well network are calculated from the principal values of the anisotropic permeability.
基金the financial support from the Young Fund of Natural Science Foundation of Shaanxi Province,China(Nos.2020JQ-121 and 2020JQ-701)the Direct Grant for Research,China(No.4055130)from the Chinese University of Hong Kong,China。
文摘Preforming process would change yarn angle and yarn orientation,its influence on the material properties and material orientations needs to be considered in the performance analysis.However,most current performance models fail to account for the preforming effect.An integrated performance model accounting for the impact of preforming has been developed.In this integrated model,part geometry,yarn angle and orientation after preforming of multiple prepreg layers are predicted by Finite Element Analysis(FEA)using a non-orthogonal constitutive law.Experiments were conducted to validate the preforming simulation for a single dome composites structure made by two prepreg layers with different initial fiber orientations.Performance analysis until failure was then conducted for the single dome structure to validate the integrated performance model.Comparison between simulation and experiment shows that not only the failure mode and failure zone,but also the force-displacement curve during compression process are captured correctly by the performance model,demonstrating the effectiveness of the newly proposed model in accounting for the impact of preforming process.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.
文摘In this study, a vertical axis tidal turbine with flexible blades is investigated. The focus is on analyzing the effect of flexible airfoils types and blade flexibility on turbine net output power. To this end, five different flexible airfoils (Symmetric and Non-symmetric) are employed. The results show that the use of a thick flexible symmetric airfoil can effectively increase output power compared to that achievable with a conventional rigid blade. Moreover, the use of highly flexible blades, as opposed to less flexible or rigid blades, is not recommended.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
文摘Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.
基金This work was supported by the National Natural Science Foundation of China (No. 60474002, 60504026)Shanghai Development Foundation forScience and Technology (No. 04DZ11008)
文摘Active schedule is one of the most basic and popular concepts in production scheduling research. For identical parallel machine scheduling with jobs' dynamic arrivals, the tight performance bounds of active schedules under the measurement of four popular objectives are respectively given in this paper. Similar analysis method and conclusions can be generalized to static identical parallel machine and single machine scheduling problem.
基金the National Major Science and Technology Projects of China(No.2018ZX04005001-002)State Administration for Science,Technology and Industry for National Defense of China(No.DE0904)Shanghai Academy of Spaceflight Technology of China(No.SAST2018-055)。
文摘Micro-forging(MF)is a novel surface modification technology which is capable of smoothening and strengthening the workpiece surface simultaneously.Based on analysis of the mechanism and energy conversion of micro-forging process,an electromagnetically driven microforging system is developed.To further grasp the kinetic characteristic of the equipment,a simulation model is established and its accuracy is verified.With the help of simulation and experimental results,we propose an input voltage optimization method,which drives the micro-forging head moving in a uniform and stable way.In this study,the influence of MF on surface integrity of Ti-6 Al-4 V(TC4)is firstly reported.Experimental results show that MF treatment reduces surface roughness(Ra)and increases micro-hardness by 48%and 11.8%at most,respectively.Besides,a compressive stress layer with an amplitude of-1000 MPa and a depth of 0.8 mm is observed.This study analyzes the performance and reveals the potential of micro-forging technology,which lays a solid foundation for expanding its application in TC4 surface modification.
基金the Key Program of the National Natural Science Foundation of China(Grant No.61531003)the National Natural Science Foundation of China(Grant No.62001041)+1 种基金China Postdoctoral Science Foundation(Grant No.2020TQ0016)the Fund of State Key Laboratory of Information Photonics and Optical Communications.
文摘In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization non-sensitive of the free-space channel,but also reduce the noise introduced by phase interference.However,arbitrary continuous modulation can not be carried out in the past polarization coding,resulting in that the signal state can not obtain arbitrary continuous value in Poincare space,and the security analysis of CV-QKD using polarized coherent-states in free space is not complete.Here we propose a new modulation method to extend the modulation range of signal states with an optical-fiber-based polarization controller.In particular,in terms of the main influence factors in the free-space channel,we utilize the beam extinction and elliptical model when considering the transmittance and adopt the formulation of secret key rate.In addition,the performance of the proposed scheme under foggy weather is also taken into consideration to reveal the influence of severe weather.Numerical simulation shows that the proposed scheme is seriously affected by attenuation under foggy weather.The protocol fails when visibility is less than 1 km.At the same time,the wavelength can affect the performance of the proposed scheme.Specifically,under foggy weather,the longer the wavelength,the smaller the attenuation coefficient,and the better the transmission performance.Our proposed scheme can expand the modulation range of signal state,and supplement the security research of the scheme in the free-space channel,thus can provide theoretical support for subsequent experiments.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金the National Natural Science Foundation of China(No.61605223)the Strategic Priority Research Program of Chinese Academy of Sciences(No.614A010717)the Director Fund of Advanced Laser Technology Laboratory of Anhui Province(No.AHL2021ZR06)。
文摘A numerical simulation model of plenoptic sensor aberration wavefront detection is established to simulate and analyze the detection performance of plenoptic sensor aberration wavefront for different turbulence intensities.The results show that the plenoptic sensor can achieve better distortion wavefront detection,and its wavefront detection accuracy improves with turbulence intensity.The unique optical structure design of the plenoptic sensor makes it more suitable for aberration wavefront detection in strong turbulent conditions.The wavefront detection performance of the plenoptic sensor is not only related to its wavefront reconstruction algorithm but also closely related to its structural parameter settings.The influence of structural parameters on the wavefront detection accuracy of plenoptic sensors under different turbulence intensities is simulated and analyzed.The variation law of wavefront detection accuracy and structural parameters under different turbulence intensities is summarized to provide a reference for the structural design and parameter optimization of plenoptic sensors.