This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation(LEHPA) based on deep reinforcement learning(VIADRL) to mitigate reliance on model accuracy and address ...This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation(LEHPA) based on deep reinforcement learning(VIADRL) to mitigate reliance on model accuracy and address the ever-changing human-exoskeleton interaction(HEI) dynamics. The classical sensitivity amplification control strategy is expanded to the virtual impedance control strategy with more learnable virtual impedance parameters. The adjustment of these virtual impedance parameters is formalized as finding the optimal policy for a Markov Decision Process and can then be effectively resolved using deep reinforcement learning algorithms. To ensure safe and efficient policy training, a multibody simulation environment is established to facilitate the training process, supplemented by the innovative hybrid inverse-forward dynamics simulation approach for executing the simulation. For comparison purposes, the SADRL strategy is introduced as a benchmark. A novel control performance evaluation method based on the HEI forces at the back, thighs, and shanks is proposed to quantitatively evaluate the performance of our proposed VIADRL strategy. The VIADRL controller is systematically compared with the SADRL controller at five selected walking speeds. The lumped ratio of HEI forces under the SADRL strategy relative to those under the SADRL strategy is as low as 0.81 in simulation and approximately 0.89 on the LEHPA prototype. The overall reduction of HEI forces demonstrates the superiority of the VIADRL strategy in comparison to the SADRL strategy.展开更多
Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total trac...Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total tract digestibil-ity(ATTD),hematobiochemical profiles,and liver gene abundance in broiler chickens.Two hundred one-day-old male ROSS-308 chicks were assigned to 4 dietary groups(5 replicates of ten birds per replicate)according to their average body weight(BW,38.0±0.11 g).All groups received a two-phase feeding program:starter,d 1–12 and grower,d 12–33.The control group(cFF0)was fed a standard commercial feed based on corn,soybean meal and soybean oil.The other three groups received diets in which the feed based on corn,soybean meal,and soybean oil was partially replaced with cFF at a substitution level of 6.25%(cFF6.25),12.5%(cFF12.5)or 25%(cFF25)for the following 33 d.Results The growth performance data showed no differences in BW or average daily gain among groups,although the average daily feed intake decreased during the grower period(12–33 d)and over entire experimental period(1–33 d)in a linear manner as the cFF inclusion level rose(P=0.026),positively affecting the gain to feed ratio(P=0.001).The ATTD of dry matter of the cFF-fed groups were greater with respect to control group and increased throughout the experimental period,whereas the ATTD of ether extract linearly decreased with increasing levels of cFF-fed groups compared with control group and throughout the experimental period(P<0.05).Additionally,a lin-ear increase in the heterophil to lymphocyte ratio,serum cholesterol,triglycerides and alanine-aminotransferase were observed with increasing dietary levels of cFF(P<0.05);however,no differences were observed in lipoprotein lipase or sterol regulatory element binding transcription factor gene abundance.Conclusions The results of this experiment demonstrate that it is possible to incorporate cFF into nutritionally balanced diets for broiler chickens,even up to 25%substitution levels,for up to 33 d without adversely impacting the overall growth performance of male broiler chickens raised under commercial conditions.Further studies are essential to validate the hematological trait findings.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Purpose: To summarize the approach-avoidance achievement goal and performance in the sport psychology literature.Methods: A total of 17 published studies, two of which provided two samples, were located. Accepted me...Purpose: To summarize the approach-avoidance achievement goal and performance in the sport psychology literature.Methods: A total of 17 published studies, two of which provided two samples, were located. Accepted meta-analytic procedures were used with Hedges g as the effect size metric. From the 17 studies, 73 effect sizes were calculated.Results: Results based on a random effects model indicated that the performance goal contrast had the largest facilitative impact on performance followed by the mastery and performance approach goals. Both of the avoidance goals performance and mastery had small non-significant and detrimental effects on performance. The homogeneity statistics revealed significant heterogeneity for the approach and avoidance performance goals. Categorical moderator variables were examined for study sex composition(male, female, or mixed), mean age of sample(〈18 years or 18 years), study setting(lab or naturalistic), and nature of performance variable(objective or subjective).Conclusion: The performance goal contrast holds value for sport performance research. Contrary to approach-avoidance predictions, the mastery-approach goal and performance effect size was significant and of equal magnitude as the performance approach goal and performance effect size. Thus, future research should closely test the efficacy of both the mastery- and performance contrasts in impacting performance of sport tasks. Last, the significant effect sizes reported in this review are in stark contrast to contemporary meta-analytic findings in education.Differences in the approach-avoidance goals in sport and education relative to performance should be researched further.展开更多
Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited compreh...Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited comprehension of degradation mechanisms and difficulties in acquiring in-situ features.In this study,we propose an effective approach that integrates long short-term memory(LSTM) neural network and dynamic electrochemical impedance spectroscopy(DEIS).This integrated approach enables precise prediction of future evolutions in both current-voltage and EIS features using historical testing data,without prior knowledge of degradation mechanisms.For short-term predictions spanning hundreds of hours,our approach achieves a prediction accuracy exceeding 0.99,showcasing promising prospects for diagnostic applications.Additionally,for long-term predictions spanning thousands of hours,we quantitatively determine the significance of each degradation mechanism,which is crucial for enhancing cell durability.Moreover,our proposed approach demonstrates satisfactory predictive ability in both time and frequency domains,offering the potential to reduce EIS testing time by more than half.展开更多
40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassiu...40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture 5.4 × 10 6 cold 40K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D+ MOT), which is almost three orders of magnitude greater than previous results without the 2D+ MOT. The number of the 40K atoms is sufficient for most ultra-cold 40K experiments, and our approach provides an ideal alternative for the field.展开更多
The aesthetic nature of dance places pressure on the athlete to have low body weight and fat and despite data showing higher protein intake improving body composition in numerous populations, a paucity of data exists ...The aesthetic nature of dance places pressure on the athlete to have low body weight and fat and despite data showing higher protein intake improving body composition in numerous populations, a paucity of data exists on dancers. Therefore, the purpose of this study was to examine associations between protein intake, body composition and performance among dancers. Female dancers (n = 25; age 20.7 ± 1.8 years; mean ± SD) completed three-day diet logs, body composition (DXA), and performance testing. Protein intake was expressed as g/kg/day and three equal tertiles were created (Low protein: LP, 〈 1.2 g/kg/day; Moderate protein: MP, 1.2-1.6 g/kg/day; High protein: HP, 〉 1.6 g/kg/day). Data were analyzed using one-way ANOVA to compare group means with significance at P 〈 0.05. Protein and energy intake were greater in HP compared to LP (P = 0.001, 0.033, respectively). The only performance difference observed was peak horizontal force (AMTI force platform) which was significantly greater in HP compared to LP (LP: 295.7 ± 111.1N, HP: 419.9 ± 76.7N; P = 0.029). In conclusion, no significant differences were found between protein tertiles and body composition. Nevertheless, protein intake may be physiologically important to dancers when combined with evidence from other athletic .populations indicating high protein and energy intake may be beneficial to body composition.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
During the Chinese New Year of 2024,China National Opera&Dance Drama Theater was invited to Hungary,Sweden,Denmark and Norway to carry out the 2024"Happy Chinese NewYear"tour performance.China National O...During the Chinese New Year of 2024,China National Opera&Dance Drama Theater was invited to Hungary,Sweden,Denmark and Norway to carry out the 2024"Happy Chinese NewYear"tour performance.China National Opera&Dance Drama Theater sent a visiting team composed of 29 artists to touch the hearts of overseas audiences with the art of ethnic singing and dancing and the deep charm of the Chinese culture,and to spread the essence of the Chinese culture in the dialogue with the world.展开更多
On October 21,2021,the 13th Natinal Dance Performance kicked off at the Guangzhou Opera House.There were all together 83 shows,presenting a wonderful dance art event for the audience.According to the organizer,this di...On October 21,2021,the 13th Natinal Dance Performance kicked off at the Guangzhou Opera House.There were all together 83 shows,presenting a wonderful dance art event for the audience.According to the organizer,this distinctive Performance was rich in content,focusing on the themes of revolution and reality such as the 100th anniversary of the founding of the Communist Party of China and completing building a moderately prosperous society in all respects.展开更多
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin...Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.展开更多
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec...NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.展开更多
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa...A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.展开更多
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were...The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.展开更多
文摘This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation(LEHPA) based on deep reinforcement learning(VIADRL) to mitigate reliance on model accuracy and address the ever-changing human-exoskeleton interaction(HEI) dynamics. The classical sensitivity amplification control strategy is expanded to the virtual impedance control strategy with more learnable virtual impedance parameters. The adjustment of these virtual impedance parameters is formalized as finding the optimal policy for a Markov Decision Process and can then be effectively resolved using deep reinforcement learning algorithms. To ensure safe and efficient policy training, a multibody simulation environment is established to facilitate the training process, supplemented by the innovative hybrid inverse-forward dynamics simulation approach for executing the simulation. For comparison purposes, the SADRL strategy is introduced as a benchmark. A novel control performance evaluation method based on the HEI forces at the back, thighs, and shanks is proposed to quantitatively evaluate the performance of our proposed VIADRL strategy. The VIADRL controller is systematically compared with the SADRL controller at five selected walking speeds. The lumped ratio of HEI forces under the SADRL strategy relative to those under the SADRL strategy is as low as 0.81 in simulation and approximately 0.89 on the LEHPA prototype. The overall reduction of HEI forces demonstrates the superiority of the VIADRL strategy in comparison to the SADRL strategy.
基金Department of Veterinary Sciences“Ricerca Locale–Linea A”.
文摘Background The present experiment aimed to evaluate the effects of commercially processed former foodstuffs(cFF)as dietary substitutes of corn,soybean meal and soybean oil on the growth performance,apparent total tract digestibil-ity(ATTD),hematobiochemical profiles,and liver gene abundance in broiler chickens.Two hundred one-day-old male ROSS-308 chicks were assigned to 4 dietary groups(5 replicates of ten birds per replicate)according to their average body weight(BW,38.0±0.11 g).All groups received a two-phase feeding program:starter,d 1–12 and grower,d 12–33.The control group(cFF0)was fed a standard commercial feed based on corn,soybean meal and soybean oil.The other three groups received diets in which the feed based on corn,soybean meal,and soybean oil was partially replaced with cFF at a substitution level of 6.25%(cFF6.25),12.5%(cFF12.5)or 25%(cFF25)for the following 33 d.Results The growth performance data showed no differences in BW or average daily gain among groups,although the average daily feed intake decreased during the grower period(12–33 d)and over entire experimental period(1–33 d)in a linear manner as the cFF inclusion level rose(P=0.026),positively affecting the gain to feed ratio(P=0.001).The ATTD of dry matter of the cFF-fed groups were greater with respect to control group and increased throughout the experimental period,whereas the ATTD of ether extract linearly decreased with increasing levels of cFF-fed groups compared with control group and throughout the experimental period(P<0.05).Additionally,a lin-ear increase in the heterophil to lymphocyte ratio,serum cholesterol,triglycerides and alanine-aminotransferase were observed with increasing dietary levels of cFF(P<0.05);however,no differences were observed in lipoprotein lipase or sterol regulatory element binding transcription factor gene abundance.Conclusions The results of this experiment demonstrate that it is possible to incorporate cFF into nutritionally balanced diets for broiler chickens,even up to 25%substitution levels,for up to 33 d without adversely impacting the overall growth performance of male broiler chickens raised under commercial conditions.Further studies are essential to validate the hematological trait findings.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
文摘Purpose: To summarize the approach-avoidance achievement goal and performance in the sport psychology literature.Methods: A total of 17 published studies, two of which provided two samples, were located. Accepted meta-analytic procedures were used with Hedges g as the effect size metric. From the 17 studies, 73 effect sizes were calculated.Results: Results based on a random effects model indicated that the performance goal contrast had the largest facilitative impact on performance followed by the mastery and performance approach goals. Both of the avoidance goals performance and mastery had small non-significant and detrimental effects on performance. The homogeneity statistics revealed significant heterogeneity for the approach and avoidance performance goals. Categorical moderator variables were examined for study sex composition(male, female, or mixed), mean age of sample(〈18 years or 18 years), study setting(lab or naturalistic), and nature of performance variable(objective or subjective).Conclusion: The performance goal contrast holds value for sport performance research. Contrary to approach-avoidance predictions, the mastery-approach goal and performance effect size was significant and of equal magnitude as the performance approach goal and performance effect size. Thus, future research should closely test the efficacy of both the mastery- and performance contrasts in impacting performance of sport tasks. Last, the significant effect sizes reported in this review are in stark contrast to contemporary meta-analytic findings in education.Differences in the approach-avoidance goals in sport and education relative to performance should be researched further.
基金partly supported by Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research in Japan (P22370)by Key Project of Jiangsu Province (BE2022029) in China。
文摘Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited comprehension of degradation mechanisms and difficulties in acquiring in-situ features.In this study,we propose an effective approach that integrates long short-term memory(LSTM) neural network and dynamic electrochemical impedance spectroscopy(DEIS).This integrated approach enables precise prediction of future evolutions in both current-voltage and EIS features using historical testing data,without prior knowledge of degradation mechanisms.For short-term predictions spanning hundreds of hours,our approach achieves a prediction accuracy exceeding 0.99,showcasing promising prospects for diagnostic applications.Additionally,for long-term predictions spanning thousands of hours,we quantitatively determine the significance of each degradation mechanism,which is crucial for enhancing cell durability.Moreover,our proposed approach demonstrates satisfactory predictive ability in both time and frequency domains,offering the potential to reduce EIS testing time by more than half.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300600 and2016YFA0301500the National Natural Science Foundation of China under Grant Nos 11474347,61227902 and 61775232
文摘40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture 5.4 × 10 6 cold 40K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D+ MOT), which is almost three orders of magnitude greater than previous results without the 2D+ MOT. The number of the 40K atoms is sufficient for most ultra-cold 40K experiments, and our approach provides an ideal alternative for the field.
文摘The aesthetic nature of dance places pressure on the athlete to have low body weight and fat and despite data showing higher protein intake improving body composition in numerous populations, a paucity of data exists on dancers. Therefore, the purpose of this study was to examine associations between protein intake, body composition and performance among dancers. Female dancers (n = 25; age 20.7 ± 1.8 years; mean ± SD) completed three-day diet logs, body composition (DXA), and performance testing. Protein intake was expressed as g/kg/day and three equal tertiles were created (Low protein: LP, 〈 1.2 g/kg/day; Moderate protein: MP, 1.2-1.6 g/kg/day; High protein: HP, 〉 1.6 g/kg/day). Data were analyzed using one-way ANOVA to compare group means with significance at P 〈 0.05. Protein and energy intake were greater in HP compared to LP (P = 0.001, 0.033, respectively). The only performance difference observed was peak horizontal force (AMTI force platform) which was significantly greater in HP compared to LP (LP: 295.7 ± 111.1N, HP: 419.9 ± 76.7N; P = 0.029). In conclusion, no significant differences were found between protein tertiles and body composition. Nevertheless, protein intake may be physiologically important to dancers when combined with evidence from other athletic .populations indicating high protein and energy intake may be beneficial to body composition.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘During the Chinese New Year of 2024,China National Opera&Dance Drama Theater was invited to Hungary,Sweden,Denmark and Norway to carry out the 2024"Happy Chinese NewYear"tour performance.China National Opera&Dance Drama Theater sent a visiting team composed of 29 artists to touch the hearts of overseas audiences with the art of ethnic singing and dancing and the deep charm of the Chinese culture,and to spread the essence of the Chinese culture in the dialogue with the world.
文摘On October 21,2021,the 13th Natinal Dance Performance kicked off at the Guangzhou Opera House.There were all together 83 shows,presenting a wonderful dance art event for the audience.According to the organizer,this distinctive Performance was rich in content,focusing on the themes of revolution and reality such as the 100th anniversary of the founding of the Communist Party of China and completing building a moderately prosperous society in all respects.
文摘Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.
文摘NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.
基金The National Key Research and Development Program of China(No.2023YFC3805005)Shanghai Municipal Science and Technology Commission Research Program(No.22DZ1201404).
文摘A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
文摘The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.