期刊文献+
共找到10,246篇文章
< 1 2 250 >
每页显示 20 50 100
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
1
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 Control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
Improvement of Cold Recycled Mixture Performance Based on Improved Density Test Method and RAP Characteristics
2
作者 HAN Zhanchuang PANG Yafeng LIN Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期79-87,共9页
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were... The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM. 展开更多
关键词 RAP volume parameters high-temperature performance low-temperature performance water stability
原文传递
Preparation of Si/NC/CL-20 Composite Explosives by Electrostatic Spraying Method and Its Performance Characterization
3
作者 DUAN Yi-long WANG Ling-xin +3 位作者 DONG Jun LI Xiu-long HE Xi JI Wei 《火炸药学报》 北大核心 2025年第5期424-429,I0001,共7页
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ... To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20. 展开更多
关键词 applied chemistry electrostatic spraying method SI Si/NC/CL-20 thermal decomposition performance combustion performance
在线阅读 下载PDF
The H_(∞) Robust Stability and Performance Conditions for Uncertain Robot Manipulators
4
作者 Geun Il Song Hae Yeon Park Jung Hoon Kim 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期270-272,共3页
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo... Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5]. 展开更多
关键词 robot manipulator robust stability performance conditions H performance conditions nominal model robot manipulatorsthere dealing their effects robust stability
在线阅读 下载PDF
Preparation of HMX-based energetic microspheres with efficient self-healing function by microchannel technology to enhance storage performance and interface bonding effect
5
作者 Wenqing Li Mianji Qiu +5 位作者 Wangjian Cheng Qian Yang Xiaohong Yan Yousheng Qiu Chongwei An Baoyun Ye 《Defence Technology(防务技术)》 2025年第10期47-59,共13页
The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-heali... The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs. 展开更多
关键词 SELF-HEALING HMX Microchannel technology Storage performance Combustion performance
在线阅读 下载PDF
Study on the Mechanical Performance of Wet Concrete Joints in Large-Span Composite Steel-Concrete Cable-Stayed Bridges
6
作者 Yang Wang Zhe Wu +1 位作者 Kaixing Zhang Youzhi Wang 《Structural Durability & Health Monitoring》 2025年第3期613-642,共30页
A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests... A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model. 展开更多
关键词 Large-span cable-stayed bridges steel-concrete composite girders wet joints mechanical performance cooperative working performance in-situ tests finite element analysis
在线阅读 下载PDF
Study on the seismic performance of buckling-restrained SPSW structure with butterfly-shaped links on the lateral sides
7
作者 ZHOU Guangru LIU Han +3 位作者 LI Xiangmin CUI Shaoxian LENG Yubing HAN Chongqing 《Journal of Southeast University(English Edition)》 2025年第2期190-198,共9页
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa... A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized. 展开更多
关键词 steel plate shear wall structure seismic performance performance cooperative performance buckling-restrained steel plate shear wall butterfly-shaped link
在线阅读 下载PDF
Workability and Mechanical Performances of Cement Paste with Nano-TiO_(2)
8
作者 WANG Zigeng SHEN Yonghao +1 位作者 LI Yue DU Huan 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1286-1296,共11页
This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution conc... This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution concentrations of 3%,6%,9%,and 12%,the optimal dispersion effect was achieved with an ultrasonic dispersion time of 20 minutes.Specifically,at a 6%nano-TiO_(2)content,both the workability and mechanical performance of the cement paste were enhanced.Furthermore,while nano-TiO_(2)did not alter the types of hydration products present in the cement paste,it did increase the amount of C-S-H gels.This enhancement was attributed to a higher number of nucleation sites for hydration products,which promoted hydration and reduced the porosity of the cement paste. 展开更多
关键词 cement paste nano-TiO_(2) workability performance mechanical performance microscopic analysis
原文传递
A domed-rugby hohlraum design with high radiation and implosion performance
9
作者 Longfei JING Liang GUO +7 位作者 Hang LI Zhiwei LIN Chuankui SUN Yunbao HUANG Zhichao LI Dong YANG Lu ZHANG Longyu KUANG 《Plasma Science and Technology》 2025年第5期115-121,共7页
Obtaining inertial fusion energy requires higher gain in laser indirect drive inertial confinement fusion(ICF),but traditional cylindrical hohlraums face two persistent challenges:low energy coupling efficiency from t... Obtaining inertial fusion energy requires higher gain in laser indirect drive inertial confinement fusion(ICF),but traditional cylindrical hohlraums face two persistent challenges:low energy coupling efficiency from the hohlraum to the capsule and severe inner beam interception by outer gold bubbles,both needing optimization for improved ICF performance.In this paper,a new domed-rugby hohlraum design is proposed.The novel and optimized hohlraum configuration increases the energy coupling efficiency by reducing the wall surface and energy loss with a rugby-shaped geometry,thereby enhancing the radiation source temperature.Simultaneously,through a special toroidal dome structure,the interaction between the outer bubble plasma and inner laser beams is mitigated,allowing the inner laser beams to reach the waist of the hohlraum.As a result,more spherical implosions are obtained and the quality of the radiation source is improved.It has been simulated that on the 100 kJ class laser facility,there is a 20%higher neutron yield.The integrated implosion performance is expected to be significantly advanced in such a novel configuration,providing a new concept for hohlraum configuration designs with a high-temperature and high-quality radiation source. 展开更多
关键词 inertial confinement fusion hohlraum configuration gold bubble expansion hohlraum performance implosion performance
在线阅读 下载PDF
Data Driven Comprehensive Performance Evaluation of Aeroengines:A Network Dynamic Approach
10
作者 Yuting Wang Feng Liu +4 位作者 Feng Xi Bofei Wei Dongli Duan Zhiqiang Cai Shubin Si 《Engineering》 2025年第3期292-305,共14页
Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digit... Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments. 展开更多
关键词 Comprehensive performance evaluation Aeroengine performance NETWORK RESILIENCE
在线阅读 下载PDF
Performance vs.Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems
11
作者 Sarah M.Kamel Mai A.Fadel +1 位作者 Lamiaa Elrefaei Shimaa I.Hassan 《Computer Modeling in Engineering & Sciences》 2025年第4期373-411,共39页
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate... Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions. 展开更多
关键词 Arabic-VQA deep learning-based VQA deep multimodal information fusion multimodal representation learning VQA of yes/no questions VQA model complexity VQA model performance performance-complexity trade-off
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
12
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries 被引量:2
13
作者 Zixin Fan Xiaoyu Chen +5 位作者 Jingjing Shi Hui Nie Xiaoming Zhang Xingping Zhou Xiaolin Xie Zhigang Xue 《Nano-Micro Letters》 2025年第6期55-92,共38页
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat... The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries. 展开更多
关键词 SEPARATORS Polymer electrolytes Lithium batteries Electrochemical performances FUNCTIONALIZATION
在线阅读 下载PDF
Machine learning approaches for predicting impact sensitivity and detonation performances of energetic materials 被引量:2
14
作者 Wei-Hong Liu Qi-Jun Liu +1 位作者 Fu-Sheng Liu Zheng-Tang Liu 《Journal of Energy Chemistry》 2025年第3期161-171,共11页
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ... Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity. 展开更多
关键词 Energetic materials Machine learning Impact sensitivity Detonation performances Feature descriptors Balancing strategy
在线阅读 下载PDF
The sow vaginal and gut microbiota associated with longevity and reproductive performance 被引量:1
15
作者 Ziyu Liu Tsungcheng Tsai +5 位作者 Bin Zuo Samantha Howe Jason EFarrar Christopher ERandolph Charles VMaxwell Jiangchao Zhao 《Journal of Animal Science and Biotechnology》 2025年第2期577-595,共19页
Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between... Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production. 展开更多
关键词 LONGEVITY Parity Rectal microbiome Reproductive performance SOWS Vaginal microbiome
在线阅读 下载PDF
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
16
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 Droplet microfluidic technology Interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Flexural Performance of UHPC-Reinforced Concrete T-Beams:Experimental and Numerical Investigations 被引量:1
17
作者 Guangqing Xiao Xilong Chen +2 位作者 Lihai Xu Feilong Kuang Shaohua He 《Structural Durability & Health Monitoring》 2025年第5期1167-1181,共15页
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated... This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders. 展开更多
关键词 UHPC thin layer T-BEAM REINFORCEMENT bending performance numerical simulation
在线阅读 下载PDF
Artificial Intelligence Empowers Solid‑State Batteries for Material Screening and Performance Evaluation 被引量:1
18
作者 Sheng Wang Jincheng Liu +5 位作者 Xiaopan Song Huajian Xu Yang Gu Junyu Fan Bin Sun Linwei Yu 《Nano-Micro Letters》 2025年第11期599-629,共31页
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b... Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration. 展开更多
关键词 Solid-state batteries Artificial intelligence Deep learning Material screening performance evaluation
在线阅读 下载PDF
Ultrafine-grained refractory high-entropy alloy with oxygen control and high mechanical performance 被引量:1
19
作者 Yaping Sun Chao Hou +3 位作者 Yurong Li Tielong Han Xuemei Liu Xiaoyan Song 《Journal of Materials Science & Technology》 2025年第12期45-57,共13页
Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bott... Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance. 展开更多
关键词 Refractory high-entropy alloy Ultrafine-grained structure Grain boundary cohesion Mechanical performance High-temperature strength
原文传递
Investigation of mixing performance and safety characteristics of polymer-based energetic materials simulant via screw-pressing blending extrusion charges 被引量:1
20
作者 Gaoming Lin Huzeng Zong +6 位作者 Suwei Wang Huang Chen Siyu Yu Xiaojie Hao Kang Wang Yuanyuan Li Guohui Zhang 《Defence Technology(防务技术)》 2025年第2期287-305,共19页
The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experim... The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process. 展开更多
关键词 Polymer-based energetic materials Screw-pressing charging process Structural design Process safety Mixing performance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部