期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Enhanced dynamics of Al^(3+)/H^(+) ions in aqueous aluminum ion batteries:Construction of metastable structures in vanadium pentoxide upon oxygen vacancies
1
作者 Zhibao Wang Hanqing Gu +2 位作者 Tianci Wu Wenming Zhang Zhanyu Li 《Journal of Energy Chemistry》 2025年第2期562-569,I0011,共9页
In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the p... In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides. 展开更多
关键词 Vanadium pentoxide Oxygen vacancies Electrochemical activation Metastable structure
在线阅读 下载PDF
Water molecules and oxygen-vacancy modulation of vanadium pentoxide with fast kinetics toward ultrahigh power density and durable flexible all-solid-state zinc ion battery 被引量:2
2
作者 Wenda Qiu Yunlei Tian +7 位作者 Shuting Lin Aihua Lei Zhangqi Geng Kaitao Huang Jiancong Chen Fuchun Huang Huajie Feng Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期581-591,I0014,共12页
Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its appli... Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its application is severely hindered by the slow diffusion of zinc ions in desirable cathode materials.Herein,a technique of water-incorporation coupled with oxygen-vacancy modulation is exploited to improve the zinc ions diffusion kinetics in vanadium pentoxide(V_(2)O_5)cathode for ZIB.The incorporated water molecules replace lattice oxygen in V_(2)O_5,and function as pillars to expand interlayer distance.So the structural stability can be enhanced,and the zinc ions diffusion kinetics might also be promoted during the repeated intercalation/deintercalation.Meanwhile,the lattice water molecules can effectively enhance conductivity due to the electronic density modulation effect.Consequently,the modulated V_(2)O_5(H-V_(2)O_5)cathode behaves with superior rate capacity and stable durability,achieving 234 mA h g^(-1)over 9000 cycles even at 20 A g^(-1).Furthermore,a flexible all-solid-state(ASS)ZIB has been constructed,exhibiting an admirable energy density of 196.6 Wh kg^(-1)and impressive power density of 20.4 kW kg^(-1)as well as excellent long-term lifespan.Importantly,the assembled flexible ASS ZIB would be able to work in a large temperature span(from-20 to 70℃).Additionally,we also uncover the energy storage mechanism of the H-V_(2)O_5 electrode,offering a novel approach for creating high-kinetics cathodes for multivalent ion storage. 展开更多
关键词 Interlayer engineering Water intercalation Vanadium pentoxide Ion diffusion kinetics Zinc ion battery
在线阅读 下载PDF
Free-standing vanadium pentoxide nanoribbon film as a high-performance cathode for rechargeable sodium batteries 被引量:2
3
作者 Yi Sun Xin Liang +1 位作者 Hongfa Xiang Yan YU 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第12期2251-2253,共3页
Vanadium pentoxide (V2O5.nH2O) nanoribbons are synthesized via a hydrothermal process. These ribbons are 20nm thick, 200nm to 1 μm wide and several tens of micrometers long. Free-standing binder-free films are prep... Vanadium pentoxide (V2O5.nH2O) nanoribbons are synthesized via a hydrothermal process. These ribbons are 20nm thick, 200nm to 1 μm wide and several tens of micrometers long. Free-standing binder-free films are prepared by using these nanoribbons with multi-walled carbon nanotubes (MWCNTs) and used as the cathode for rechargeable sodium batteries. The large interlayer space between the V20s5 bilayers can enhance the kinetics of sodium ion intercalation/deintercalation. In addition, the intertwining network of the V2O5. 0.34H2O film provides efficient electron conduction pathways and shortens diffusion distances of sodium ion. The electrochemical tests prove that the free- standing V2O5. 0.34H2O film cathode delivers high reversible specific capacities (190 mAh/g) and good cycling stabilities (170 mAh/g after 150 cycles) in the voltage range between 1.5V and 3.5V. 展开更多
关键词 Vanadium pentoxide CATHODE Free-standing electrode Rechargeable sodium batteries
原文传递
Facile Synthesis,Characterization of Flower-Like Vanadium Pentoxide Powders and Their Photocatalytic Behavior 被引量:1
4
作者 Yao Li Jian-Lei Kuang +1 位作者 Yi Lu Wen-Bin Cao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第10期1017-1026,共10页
In this paper, V2O5 sol was firstly prepared using vanadyl sulfate as a vanadium source by modified sol-gel method at room temperature. Then flower-like V2O5 powders were prepared by coagulating as-prepared sol with a... In this paper, V2O5 sol was firstly prepared using vanadyl sulfate as a vanadium source by modified sol-gel method at room temperature. Then flower-like V2O5 powders were prepared by coagulating as-prepared sol with anhydrous ethanol and subsequent annealing crystallization. The X-ray diffraction analysis indicated that V2O5 powders exhibited orthorhombic crystal structure after annealing at 450 ℃. The experimental data obtained from both field emission scanning electron microscopy and high-resolution transmission electron microscopy identified that V2O5 powders were approximately flower-like in shape and about 5 μm in size. Besides, the Brunauer-Emmett-Teller specific surface area of flowerlike V2O5 powders was 24.25 m^2/g. According to Uv-Vis spectroscopy, the degradation rate of toluidine blue O(TBO) on as-prepared flower-like V2O5 powders during 10 h of visible light irradiation with an intensity of 15.4 mW/m^2 was 88%,which was faster than those over P25(46%) as a comparison. In addition, the mineralization process of TBO was investigated, which primarily consisted of demethylation and ring-opening oxidation processes, and confirmed by liquid chromatograph-mass spectrometry. The precipitation-oxidation-peptization, coagulation, and crystallization processes were proposed as the formation mechanism for the preparation of flower-like V2O5. 展开更多
关键词 Vanadium pentoxide PHOTOCATALYST Toluidine Blue O MECHANISM DEMETHYLATION
原文传递
Selective esterification of glycerol with acetic acid to diacetin using antimony pentoxide as reusable catalyst 被引量:2
5
作者 Wenfei Hu Yan Zhang +3 位作者 Yizheng Huang Jiaxi Wang Jin Gao Jie Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期632-636,共5页
Glycerol can be obtained as a by-product during biodiesel manufacture. It is important to convert glycerol to value-added products. Glycerol esterification with acetic acid is one of the most promising approaches for ... Glycerol can be obtained as a by-product during biodiesel manufacture. It is important to convert glycerol to value-added products. Glycerol esterification with acetic acid is one of the most promising approaches for glycerol utilization. It is usually difficult to obtain diacetin with good activity and selectivity. In this work, glycerol esterification with acetic acid over different metal oxides, such as Bi2O3, Sb2O3, SnO2, TiO2, Nb2O5 and Sb2O5, was investigated. It was found that in the six investigated metal oxides, only Sb205 resulted in good activity and selectivity to diacetin. Under the optimized conditions, the glycerol conversion reached 96.8%, and the selectivity to diacetin reached 54.2%, while the selectivity to monoacetin and triacetin was 33.2% and 12.6%, respectively. The catalysts were characterized with FT-IR spectra of adsorbed pyridine, which indicated that in the six investigated metal oxides, only Sb2O5 possessed Bronsted acid sites strong enough to protonate adsorbed pyridine. The good catalytic activity and selectivity to diacetin might be mainly attributable to the Bronsted acid sites of Sb2O5. Reusability tests showed that with 5b205 as catalyst, after six reaction cycles, no significant change in the glycerol conversion and the selectivity to diacetin was observed. 展开更多
关键词 GlycerolAcetic acid Esterification Diacetin Antimony pentoxide Catalysis
在线阅读 下载PDF
Heterogeneous Acid Catalytic Esterification by Porous Polyoxometalate-tantalum Pentoxide Nanocomposites
6
作者 许蕾蕾 GUOYihang +1 位作者 MA Huiru 官建国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期580-585,共6页
Polyoxometalates (POMs) are useful catalysts in both redox and acid catalysis reactions since its catalytic features can be controlled at a molecular level. We investigated POM (POM = H3PW12040) on tantalum pentox... Polyoxometalates (POMs) are useful catalysts in both redox and acid catalysis reactions since its catalytic features can be controlled at a molecular level. We investigated POM (POM = H3PW12040) on tantalum pentoxide (Ta2O5) via hydrolysis of tantalum pentachloride (TaCl5) in the presence of POM using the sol-gel method for acid catalytic reaction. All obtained amorphous materials have been characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform infrared (FT-IR) spectra, Raman scattering spectroscopy, 31P magic-angle spinning (MAS) NMR, field emission scanning electron microscopy (FESEM), and nitrogen adsorption/desorption analysis, in order to confirm the structure integrity of the Keggin unit in as-prepared composites and investigate the morphology and surface textural property of the composites. Catalytic activity of the catalysts has been evaluated for esterification of acetic acid with ethanol as a model reaction with different catalytic reaction parameters such as POM loading, reaction time, catalyst dose, molar ratio of the reactants, etc. The conversion of ethanol reached 87.4 % and the turnover frequency (TOF) was 2.9x 103.Meanwhile, it is easy to separate and recover POM/Ta205 from the reaction system. 展开更多
关键词 ESTERIFICATION POLYOXOMETALATE tantalum pentoxide SOL-GEL porous mataterials
原文传递
Fluorinated inverse opal carbon nitride combined with vanadium pentoxide as a Z-scheme photocatalyst with enhanced photocatalytic activity
7
作者 Ningkai Ding Bin Chen +4 位作者 Liang Zhou Lingzhi Wang Yongdi Liu Jinlong Zhang Juying Lei 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3797-3801,共5页
In this work,Z-scheme V_(2)O_(5) loaded fluorinated inverse opal carbon nitride(IO F-CN/V_(2)O_(5)) was synthesized as a product of ternary collaborative modification with heterostructure construction,element doping a... In this work,Z-scheme V_(2)O_(5) loaded fluorinated inverse opal carbon nitride(IO F-CN/V_(2)O_(5)) was synthesized as a product of ternary collaborative modification with heterostructure construction,element doping and inverse opal structure.The catalyst presented the highest photocatalytic activity and rate constant for degradation of typical organic pollutants Rhodamine B(RhB)and was also used for the efficient removal of antibiotics,represented by norfloxacin(NOR),sulfadiazine(SD)and levofloxacin(LVX).Characterizations confirmed its increased specific surface area,narrowed bandgap,and enhanced visible light utilization capacity.Further mechanism study including band structure study and electron paramagnetic resonance(EPR)proved the successful construction of Z-scheme heterojunction,which improved photogenerated charge carrier migration and provide sufficient free radicals for the degradation process.The combination of different modifications contributed to the synergetic improvement of removal efficiency towards different organic pollutants. 展开更多
关键词 Carbon nitride Inverse opal structure Vanadium pentoxide Fluorinate Organic pollutants degradation
原文传递
Electrochemical properties of vanadium pentoxide xerogel films
8
作者 张勇 胡信国 +1 位作者 刘玉文 程玉山 《Journal of Central South University of Technology》 EI 2005年第5期561-566,共6页
Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemi... Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy(EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry(CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA·h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5 - 4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries. 展开更多
关键词 vanadium pentoxide xerogel films electrochemical impedance spectroscopy specific capacity lithium rechargeable batteries
在线阅读 下载PDF
On-chip microlaser and waveguide amplifier on thin-film erbium-doped tantalum pentoxide
9
作者 Jian Liu Qifeng Hou +7 位作者 Yuan Zhou Qingya Dai Zhaoxiang Liu Min Wang Renhong Gao Zhiwei Fang Jintian Lin Ya Cheng 《Chinese Optics Letters》 2025年第7期57-62,共6页
On-chip microlasers and waveguide amplifiers offer promising applications in optical communication,sensing,and photonic computing,presenting efficient,compact,and scalable light source solutions for integrated photoni... On-chip microlasers and waveguide amplifiers offer promising applications in optical communication,sensing,and photonic computing,presenting efficient,compact,and scalable light source solutions for integrated photonics systems.We demonstrated a low-threshold on-chip microdisk resonator laser and a high-gain optical waveguide amplifier on thin-film erbium-doped tantalum pentoxide(Er:Ta_(2)O_(5)).The fabricated Er:Ta_(2)O_(5) microdisk microlaser achieved a low threshold of 225μW,and the fabricated Er:Ta_(2)O_(5) waveguide amplifier achieved an on-chip gain of 8.8 dB/cm.These results demonstrate that active functional high-performance integrated photonic devices can be realized on the thin-film Ta_(2)O_(5) platform. 展开更多
关键词 MICROLASER waveguide amplifier Er~(3+)-doped tantalum pentoxide
原文传递
In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries 被引量:1
10
作者 Guyue Li Zhenguo Yao Chilin Li 《Journal of Energy Chemistry》 2025年第6期44-53,I0002,共11页
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me... Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs. 展开更多
关键词 Vanadium pentoxide cathode Electrolyte additive Solvation structure Interface manipulation Magnesium metal batteries
在线阅读 下载PDF
Titanium-niobium pentoxide composites for biomedical applications 被引量:2
11
作者 Yuncang Li Khurram S.Munir +1 位作者 Jixing Lin Cuie Wen 《Bioactive Materials》 SCIE 2016年第2期127-131,共5页
The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications.To simultaneously meet the requirements of biocomp... The strength of titanium scaffolds with the introduction of high porosity decreases dramatically and may become inadequate for load bearing in biomedical applications.To simultaneously meet the requirements of biocompatibility,low elastic modulus and appropriate strength for orthopedic implant materials,it is highly desirable to develop new biocompatible titanium based materials with enhanced strength.In this study,we developed a niobium pentoxide(Nb2O5)reinforced titanium composite via powder metallurgy for biomedical applications.The strength of the Nb2O5 reinforced titanium composites(Ti-Nb2O5)is significantly higher than that of pure titanium.Cell culture results revealed that the Ti-Nb2O5 composite exhibits excellent biocompatibility and cell adhesion.Human osteoblast-like cells grew and spread healthily on the surface of the Ti-Nb2O5 composite.Our study demonstrated that Nb2O5 reinforced titanium composite is a promising implant material by virtue of its high mechanical strength and excellent biocompatibility. 展开更多
关键词 Titanium-niobium pentoxide composite Particulate-reinforcement Orthopedic implant Mechanical property BIOCOMPATIBILITY
原文传递
Effect of Ta_(2)O_(5)nanoparticles on bioactivity,composition,structure,in vitro and in vivo behavior of PEO coatings on Mg-alloy 被引量:1
12
作者 D.V.Mashtalyar I.M.Imshinetskiy +7 位作者 V.V.Kashepa K.V.Nadaraia M.A.Piatkova A.I.Pleshkova K.A.Fomenko A.Yu.Ustinov S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2360-2379,共20页
The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on... The present study investigates the physical and chemical characteristics,behavior in vitro and in vivo,and biocompatibility of coatings containing Ta_(2)O_(5),which are obtained by plasma electrolytic oxidation(PEO)on MA8 magnesium alloy.The obtained coatings demonstrate in vivo biocompatibility and in vitro bioactivity.Compared to the base PEO coating,the layers containing Ta_(2)O_(5)facilitate the development of apatite in simulated body fluid,suggesting that the inclusion of nanoparticles improves bioactivity of the coatings.It was found that incorporation of Ta_(2)O_(5)nanoparticles increases roughness and porosity of the formed layers by increasing particle concentration in electrolytes for the PEO process contributing to sufficient soft tissue ingrowth in vivo.Based on in vivo studies,these coatings also provide favorable tissue response and minimal inflammatory reaction in comparison with the bare magnesium alloy due to protection of living tissues from deleterious corrosion events of magnesium implant such as local alkalization and intense hydrogen evolution.The results obtained in the present study concluded biocompatibility,tissue integration of the PEO coatings containing Ta_(2)O_(5)nanoparticles making them a promising protective layer for biodegradable magnesium implants. 展开更多
关键词 Plasma electrolytic oxidation Bioactive coatings Tantalum pentoxide Simulated body fluid(SBF) Apatite formation HISTOLOGY
在线阅读 下载PDF
Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb_(2)O_(5)@PAN/PVDF/ANO composite nanofibers
13
作者 Aditya Rianjanu Kurniawan Deny Pratama Marpaung +8 位作者 Elisabeth Kartini Arum Melati Rizky Aflaha Yudha Gusti Wibowo I Putu Mahendra Nursidik Yulianto Januar Widakdo Kuwat Triyana Hutomo Suryo Wasisto Tarmizi Taher 《Nano Materials Science》 EI CAS CSCD 2024年第1期96-105,共10页
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo... This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications. 展开更多
关键词 Hierarchical nanostructure Composite nanofiber Niobium pentoxide Dye degradation Synergetic adsorption and photocatalysis
在线阅读 下载PDF
Optimization of preparing V_2O_5 by calcination from ammonium metavanadate using response surface methodology 被引量:6
14
作者 刘秉国 彭金辉 +3 位作者 万润东 张利波 郭胜惠 张世敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期673-678,共6页
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi... Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology. 展开更多
关键词 vanadium pentoxide ammonium metavanadate CALCINATION response surface methodology
在线阅读 下载PDF
Structure of V_2O_5-P_2O_5-Sb_2O_3-Bi_2O_3 glass 被引量:1
15
作者 Hong-yan Li Zhi-liang Zhu +3 位作者 Feng-li Yang Wei-dong Zhuang Yun-sheng Hu Xiao-fan Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期628-635,共8页
The structure ofV2O5-P2O5-Sb2O3-Bi2O3glass and its state of crystallization were studied by means of infrared spectroscopy and X-ray diffraction analysis. The results indicate that, in this glass, V and P exist mainly... The structure ofV2O5-P2O5-Sb2O3-Bi2O3glass and its state of crystallization were studied by means of infrared spectroscopy and X-ray diffraction analysis. The results indicate that, in this glass, V and P exist mainly in the form of a single-stranded linear (VO3)n and an isolated (PO4) tetrahedral with no double bond. Partial V and P are connected through O, forming an amorphous structure of layered vana- dium phosphate. Trivalent Sb3+ and Bi3+ open the V=O bond and appear in interlayers, so a weak three-dimensional structure is connected successfully. Along with the substitution of Sb203 for partial V205 or that of P205 for partial V205, the network structure of the glass is rein- forced, and the crystallization is reduced. 展开更多
关键词 GLASS STRUCTURE SEALING vanadium pentoxide phosphorus pentoxide antimonous oxide bismuth trioxide
在线阅读 下载PDF
Characterization of V_2O_5/MoO_3 composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate 被引量:8
16
作者 揣宏媛 周德凤 +2 位作者 朱晓飞 李朝辉 黄唯平 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2194-2202,共9页
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ... Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP. 展开更多
关键词 ELECTROSPINNING Vanadium pentoxide Molybdenum trioxide COMPOSITES Photodegradation activity Dimethyl phthalate
在线阅读 下载PDF
Vanadium recovery from clay vanadium mineral using an acid leaching method 被引量:24
17
作者 LI Haoran FENG Yali +2 位作者 LIANG Jianglong LUO Xiaobing DU Zhuwei 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期116-120,共5页
A technique including direct acid leaching, vanadium precipitation with alkaline, sodium hydroxide releaching, impurity removing by adjusting pH value, precipitation vanadium with ammonium chloride, and vanadium pento... A technique including direct acid leaching, vanadium precipitation with alkaline, sodium hydroxide releaching, impurity removing by adjusting pH value, precipitation vanadium with ammonium chloride, and vanadium pentoxide by roasting steps was proposed according to the characteristic of Xichuan clay vanadium mineral. The factors influencing leaching vanadium such as temperature and the concentration of sulfuric acid were investigated and optimized. The experimental results indicate that the extract ratios of V205 can reach 94% and 92% at a sodium chlorate ratio of 3% and a manganese dioxide ratio of 3%, respectivdy. A completely chemical precipitation method was adopted to decontaminate and enrich the vanadium in the acid leaching solution. The X-ray diffraction (XRD) pattern and the purity analysis of vanadium pentoxide indicate that the purity of final vanadium pentoxide can reach 99% and meet the standard specifications. The total recovery can reach about 75%. The technique has the characteristics of simplicity, less investment, and more environment safety as compared with the traditional salt roasting method. 展开更多
关键词 clay vanadium mineral VANADIUM EXTRACTION acid leaching vanadium pentoxide
在线阅读 下载PDF
Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl_2-NaCl 被引量:13
18
作者 Zhuo-fei Cai Zhi-mei Zhang Zhan-cheng Guo Hui-qing Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期499-505,共7页
V205 sintered pellets and graphite rods were employed as the cathode and the anode, respectively; a molten CaC12-NaCI salt was used as the electrolyte. Then, V205 was directly reduced to metal vanadium by the Fray-Far... V205 sintered pellets and graphite rods were employed as the cathode and the anode, respectively; a molten CaC12-NaCI salt was used as the electrolyte. Then, V205 was directly reduced to metal vanadium by the Fray-Farthing-Chen (FFC) method at 873 K to realize low-temperature electrolysis. Two typical experimental conditions, electrolysis time and voltage, were taken into account to investigate the current efficiency and remaining oxygen content in electrolyzed products. The composition and microstmcture of the products were charac- terized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations show that a higher voltage (1.8-3.4 V) and a longer electrolysis time (2-5 h) can improve the product quality separately, that is, a lower remaining oxygen content and a more uniform microstructure. The products with an oxygen content of 0.205wt% are successfully obtained below 3.4 V for 10 h. However, the current effi- ciency is low, and further work is required. 展开更多
关键词 vanadium metallurgy vanadium pentoxide direct reduction ELECTROLYSIS
在线阅读 下载PDF
Nb_2O_5-carbon core-shell nanocomposite as anode material for lithium ion battery 被引量:5
19
作者 Ge Li Xiaolei Wang Xueming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期357-362,共6页
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c... Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery. 展开更多
关键词 niobium pentoxide CORE-SHELL long cycle life high performance anode lithium ion battery
在线阅读 下载PDF
V_2O_5·nH_2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries 被引量:4
20
作者 Ahmed S. Etman Junliang Sun Reza Younesi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期145-151,共7页
Two dimensional(2D) transition metal oxides and chalcogenides demonstrate a promising performance in sodium-ion batteries(SIBs) application. In this study, we investigated the use of a composite of freeze dried V_2O_5... Two dimensional(2D) transition metal oxides and chalcogenides demonstrate a promising performance in sodium-ion batteries(SIBs) application. In this study, we investigated the use of a composite of freeze dried V_2O_5·nH_2O nanosheets and multi-walled carbon nanotube(MWCNT) as a negative electrode material for SIBs. Cyclic voltammetry(CV) results indicated that a reversible sodium-ion insertion/deinsertion into the composite electrode can be obtained in the potential window of 0.1–2.5 V vs. Na^+/Na. The composite electrodes delivered sodium storage capacities of 140 and 45 m Ah g^(-1) under applied current densities of 20 and 100 m A g^(-1), respectively. The pause test during constant current measurement showed a raise in the open circuit potential(OCP) of about 0.46 V, and a charge capacity loss of ~10%. These values are comparable with those reported for hard carbon electrodes. For comparison, electrodes of freeze dried V_2O_5·nH_2O nanosheets were prepared and tested for SIBs application. The results showed that the MWCNT plays a significant role in the electrochemical performance of the composite material. 展开更多
关键词 Sodium-ion BATTERIES ANODE MATERIALS VANADIUM pentoxide NANOSHEETS Composite MATERIALS
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部