期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
HIGH ACCURACY ANALYSIS OF TENSOR-PRODUCT LINEAR PENTAHEDRAL FINITE ELEMENTS FOR VARIABLE COEFFICIENT ELLIPTIC EQUATIONS
1
作者 Jinghong LIU Yijun DENG Qiding ZHU 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第2期410-416,共7页
For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In add... For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In addition, the estimate for the W1,1-seminorm of the discrete derivative Green's function is given. Finally, the authors show that the derivatives of the finite element solution uh and the corresponding interpolant Hu are superclose in the pointwise sense of the L∞-norm. 展开更多
关键词 Discrete derivative Green's function SUPERCONVERGENCE tensor-product linear pentahedralfinite elements variable coefficient elliptic problem.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部