The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to t...The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to the heterogeneity and viscous damping of rock media.Therefore,the study on attenuation characteristics of MS signals in underground engineering has practical significance for the accurately estimation of radiated seismic energy.Based on a pendulum impact test facility and MS monitoring system,an in situ investigation was carried out to explore attenuation characteristics at a deep tunnel.The results show that the seismic energy and peak particle velocity(PPV)attenuation are exponentially related to the propagation distance.The attenuation coefficient of energy is larger than that of PPV.With the increase in the input impact-energy,the seismic energy attenuation coefficient decreases as a power function.An empirical relationship between energy attenuation coefficient and wave impedance of rock mass was established in this scenario.Moreover,the time-frequency characteristics and energy distribution laws of impact-induced signals were investigated by the continuous wavelet transform(CWT)and wavelet packet analyses,respectively.The dominant frequency of signals decreases gradually as the propagation distance increases.Based on the energy attenuation characteristics,a new method was proposed to calculate the released source energy of MS events in the field.This study can provide an insight into energy attenuation characteristics of seismic waves and references for attenuation correction in seismic energy calculation.展开更多
The adhesion of thermally sprayed coatings is an important subject for engineers applying thermal spray process . The single pendulum impact scratch test is the most popular method in the tribological investigation of...The adhesion of thermally sprayed coatings is an important subject for engineers applying thermal spray process . The single pendulum impact scratch test is the most popular method in the tribological investigation of modified surfaces of materials. In this paper, the adhesion of thermally sprayed coatings has been investigated using this test method. The key of evaluation for thermally sprayed coatings is the sheer strength of coatings obtained in the test. The results show that the test method is reproducible, reliable and easy to perform, and does not require expensive equipment . The procedure proposed in the test method for evaluating the adhesion of coatings is more reliable and realistic than others.展开更多
金属材料挤出成型(metal material extrusion, MME)是采用金属粉末与聚合物黏结剂混合丝材为原料,通过成型、脱脂和烧结工艺(shaping-debinding-sintering, S-D-S)制造纯金属零部件的一种增材制造技术。随着MME技术的发展,亟须对其制品...金属材料挤出成型(metal material extrusion, MME)是采用金属粉末与聚合物黏结剂混合丝材为原料,通过成型、脱脂和烧结工艺(shaping-debinding-sintering, S-D-S)制造纯金属零部件的一种增材制造技术。随着MME技术的发展,亟须对其制品的抗冲击性能进行研究,然而相关信息非常匮乏。制备了不同过程参数下的MME试件,并采用夏比摆锤冲击试验研究了其抗冲击性能,探讨了成型方向、填充角度、挤出温度、床温及成型速度等过程参数对试件冲击吸收功的影响。结果表明:当填充角度为45°时,侧置方向成型试件的抗冲击性能最佳,水平方向次之,竖直方向最差;而在0°填充角度下,水平方向成型试件性能最好;进一步提高挤出温度、床温并降低成型速度,可以显著增强试件的抗冲击性能。研究结果为优化MME成型参数提供了理论依据,拓展了其在承受冲击载荷场景下的应用潜力。展开更多
基金The support provided by the National Natural Science Foundation of China(Grant Nos.51978541,41941018 and 51839009)is gratefully acknowledged。
文摘The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to the heterogeneity and viscous damping of rock media.Therefore,the study on attenuation characteristics of MS signals in underground engineering has practical significance for the accurately estimation of radiated seismic energy.Based on a pendulum impact test facility and MS monitoring system,an in situ investigation was carried out to explore attenuation characteristics at a deep tunnel.The results show that the seismic energy and peak particle velocity(PPV)attenuation are exponentially related to the propagation distance.The attenuation coefficient of energy is larger than that of PPV.With the increase in the input impact-energy,the seismic energy attenuation coefficient decreases as a power function.An empirical relationship between energy attenuation coefficient and wave impedance of rock mass was established in this scenario.Moreover,the time-frequency characteristics and energy distribution laws of impact-induced signals were investigated by the continuous wavelet transform(CWT)and wavelet packet analyses,respectively.The dominant frequency of signals decreases gradually as the propagation distance increases.Based on the energy attenuation characteristics,a new method was proposed to calculate the released source energy of MS events in the field.This study can provide an insight into energy attenuation characteristics of seismic waves and references for attenuation correction in seismic energy calculation.
文摘The adhesion of thermally sprayed coatings is an important subject for engineers applying thermal spray process . The single pendulum impact scratch test is the most popular method in the tribological investigation of modified surfaces of materials. In this paper, the adhesion of thermally sprayed coatings has been investigated using this test method. The key of evaluation for thermally sprayed coatings is the sheer strength of coatings obtained in the test. The results show that the test method is reproducible, reliable and easy to perform, and does not require expensive equipment . The procedure proposed in the test method for evaluating the adhesion of coatings is more reliable and realistic than others.
文摘金属材料挤出成型(metal material extrusion, MME)是采用金属粉末与聚合物黏结剂混合丝材为原料,通过成型、脱脂和烧结工艺(shaping-debinding-sintering, S-D-S)制造纯金属零部件的一种增材制造技术。随着MME技术的发展,亟须对其制品的抗冲击性能进行研究,然而相关信息非常匮乏。制备了不同过程参数下的MME试件,并采用夏比摆锤冲击试验研究了其抗冲击性能,探讨了成型方向、填充角度、挤出温度、床温及成型速度等过程参数对试件冲击吸收功的影响。结果表明:当填充角度为45°时,侧置方向成型试件的抗冲击性能最佳,水平方向次之,竖直方向最差;而在0°填充角度下,水平方向成型试件性能最好;进一步提高挤出温度、床温并降低成型速度,可以显著增强试件的抗冲击性能。研究结果为优化MME成型参数提供了理论依据,拓展了其在承受冲击载荷场景下的应用潜力。