Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
PbS quantum dot(QD)image sensors have emerged as promising chips for a wide range of infrared(IR)imaging applications due to their monolithic integration with silicon-based readout integrated circuits.However,avoiding...PbS quantum dot(QD)image sensors have emerged as promising chips for a wide range of infrared(IR)imaging applications due to their monolithic integration with silicon-based readout integrated circuits.However,avoiding primary toxic Pb usage and reducing the cost of PbS QDs remains crucial for widespread application.We present a novel cost-effective and environmentally friendly hydrometallurgical process for recovering PbCl_(2)from spent lead-acid battery paste to synthesize high-quality PbS QDs.The method recovers PbCl_(2)with a production ratio of 97%and a purity of 99.99%.PbS QDs and photodetectors synthesized from recycled PbCl_(2)(R-PbCl_(2))have comparable performance and quality to those made using commercial PbCl_(2).R-PbCl_(2)-derived photodetectors exhibit a high external quantum efficiency of 49.6%and a high specific detectivity of 6.95×10^(12)Jones compared to published studies.Additionally,based on R-PbCl_(2),a PbS QD image sensor with 640×512 resolution successfully discriminated common solvents.Moreover,through life-cycle assessment and economic cost analysis,this novel synthesis route offers great advantages in the environmentally friendly use of chemical reagents and reduces the production cost of PbS QDs by 23.2%compared to commercial PbCl_(2).Thus,this work not only contributes to the green recycling of spent lead paste but also provides a low-cost strategy for synthesizing PbS QDs and their optoelectronic application.展开更多
Autophagy is crucial for maintaining cellular homeostasis and is linked to various dis-eases.In Saccharomyces cerevisiae,the Polymyxin B Sensitivity 2(Pbs2)protein is a member of the mitogen-activated protein kinase(M...Autophagy is crucial for maintaining cellular homeostasis and is linked to various dis-eases.In Saccharomyces cerevisiae,the Polymyxin B Sensitivity 2(Pbs2)protein is a member of the mitogen-activated protein kinase(MAPK)family and plays a role in mitophagy.To explore the potential role of Pbs2 in macroautophagy,we engineered wild-type and PBS2-deficient cells using plasmid construction and yeast transforma-tion techniques,followed by a series of autophagy assays.First,after nitrogen star-vation,the levels of autophagic activity were evaluated with the classical GFP-Atg8 cleavage assay and the Pho8Δ60 activity assay at different time points.Deleting PBS2 significantly decreased both GFP-Atg8 protein cleavage and Pho8Δ60 activity,indicat-ing that Pbs2 is essential for macroautophagy.Furthermore,the influence of Pbs2 on macroautophagy was shown to be independent of Hog1,a well-known downstream factor of Pbs2.Second,the Atg8 lipidation assay demonstrated that Atg8 lipidation levels increased upon PBS2 deletion,suggesting that Pbs2 acts after Atg8 lipidation.Third,the proteinase K protection assay indicated that the loss of PBS2 led to a higher proportion of closed autophagosomes,implying that Pbs2 impacts the later stages of macroautophagy following autophagosome closure.In conclusion,Pbs2 regulates the late stages of macroautophagy induced by nitrogen starvation.展开更多
采用不同的方法及改性剂处理秸秆纤维,并对聚丁二酸丁二醇酯(PBS)进行共混改性,利用热压工艺得到了秸秆纤维/PBS复合材料。研究了水煮和微波处理工艺对秸秆纤维提取量的影响;研究了苯甲酸等改性剂的种类、添加量对秸秆纤维及秸秆纤维/PB...采用不同的方法及改性剂处理秸秆纤维,并对聚丁二酸丁二醇酯(PBS)进行共混改性,利用热压工艺得到了秸秆纤维/PBS复合材料。研究了水煮和微波处理工艺对秸秆纤维提取量的影响;研究了苯甲酸等改性剂的种类、添加量对秸秆纤维及秸秆纤维/PBS复合材料性能的影响。采用扫描电子显微镜观察了秸秆纤维处理前后的表面形貌。研究结果表明:水煮工艺为煮沸30 min 2次,微波处理工艺为微波连续处理15 min时为最佳工艺;对比2种工艺,微波连续处理15 min得到的秸秆纤维比水煮处理后的更为疏松,比表面积更大,同时得到的秸秆纤维/PBS复合材料综合性能良好,并且在硬脂酸质量分数约为3.5%时复合材料的力学性能最优。展开更多
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金supported by Key program of National Natural Science Foundation of China(52330004)National Natural Science Foundation of China General Project(51978301)National Key Research and Development Program of China(2023YFC3902802)。
文摘PbS quantum dot(QD)image sensors have emerged as promising chips for a wide range of infrared(IR)imaging applications due to their monolithic integration with silicon-based readout integrated circuits.However,avoiding primary toxic Pb usage and reducing the cost of PbS QDs remains crucial for widespread application.We present a novel cost-effective and environmentally friendly hydrometallurgical process for recovering PbCl_(2)from spent lead-acid battery paste to synthesize high-quality PbS QDs.The method recovers PbCl_(2)with a production ratio of 97%and a purity of 99.99%.PbS QDs and photodetectors synthesized from recycled PbCl_(2)(R-PbCl_(2))have comparable performance and quality to those made using commercial PbCl_(2).R-PbCl_(2)-derived photodetectors exhibit a high external quantum efficiency of 49.6%and a high specific detectivity of 6.95×10^(12)Jones compared to published studies.Additionally,based on R-PbCl_(2),a PbS QD image sensor with 640×512 resolution successfully discriminated common solvents.Moreover,through life-cycle assessment and economic cost analysis,this novel synthesis route offers great advantages in the environmentally friendly use of chemical reagents and reduces the production cost of PbS QDs by 23.2%compared to commercial PbCl_(2).Thus,this work not only contributes to the green recycling of spent lead paste but also provides a low-cost strategy for synthesizing PbS QDs and their optoelectronic application.
基金National Natural Science Foundation of China,Grant/Award Number:31970044 and 32370805。
文摘Autophagy is crucial for maintaining cellular homeostasis and is linked to various dis-eases.In Saccharomyces cerevisiae,the Polymyxin B Sensitivity 2(Pbs2)protein is a member of the mitogen-activated protein kinase(MAPK)family and plays a role in mitophagy.To explore the potential role of Pbs2 in macroautophagy,we engineered wild-type and PBS2-deficient cells using plasmid construction and yeast transforma-tion techniques,followed by a series of autophagy assays.First,after nitrogen star-vation,the levels of autophagic activity were evaluated with the classical GFP-Atg8 cleavage assay and the Pho8Δ60 activity assay at different time points.Deleting PBS2 significantly decreased both GFP-Atg8 protein cleavage and Pho8Δ60 activity,indicat-ing that Pbs2 is essential for macroautophagy.Furthermore,the influence of Pbs2 on macroautophagy was shown to be independent of Hog1,a well-known downstream factor of Pbs2.Second,the Atg8 lipidation assay demonstrated that Atg8 lipidation levels increased upon PBS2 deletion,suggesting that Pbs2 acts after Atg8 lipidation.Third,the proteinase K protection assay indicated that the loss of PBS2 led to a higher proportion of closed autophagosomes,implying that Pbs2 impacts the later stages of macroautophagy following autophagosome closure.In conclusion,Pbs2 regulates the late stages of macroautophagy induced by nitrogen starvation.
文摘采用不同的方法及改性剂处理秸秆纤维,并对聚丁二酸丁二醇酯(PBS)进行共混改性,利用热压工艺得到了秸秆纤维/PBS复合材料。研究了水煮和微波处理工艺对秸秆纤维提取量的影响;研究了苯甲酸等改性剂的种类、添加量对秸秆纤维及秸秆纤维/PBS复合材料性能的影响。采用扫描电子显微镜观察了秸秆纤维处理前后的表面形貌。研究结果表明:水煮工艺为煮沸30 min 2次,微波处理工艺为微波连续处理15 min时为最佳工艺;对比2种工艺,微波连续处理15 min得到的秸秆纤维比水煮处理后的更为疏松,比表面积更大,同时得到的秸秆纤维/PBS复合材料综合性能良好,并且在硬脂酸质量分数约为3.5%时复合材料的力学性能最优。